Many experimental works appeared in the last decade in the open literature dealing with forced convection through microchannels. The earliest experimental results on single-phase flows in microchannels evidenced that for channels having a hydraulic diameter less than 1mm the conventional continuum models can no longer be considered as able to accurately predict pressure drop and convective heat transfer coefficients. This conclusion seemed to be valid for both gas and liquid flows. Sometimes the authors justified this conclusion by invoking new micro-effects, e.g., electrostatic interaction between the fluid and the walls or scaling effects (axial heat conduction, viscous forces, conjugate heat transfer, wall roughness, and so on). In this paper the role of the viscous dissipation in liquids flowing through heated microchannels will be analyzed by using the conventional theory. We will present a correlation between the Brinkman number and the Nusselt number for silicon ⟨100⟩ and ⟨110⟩ microchannels. It will be demonstrated that the fluid is of importance in establishing the exact limit of significance of the viscous dissipation in microchannels; a criterion to analyze the significance of the viscous effects will be presented. The role of the cross-section aspect ratio on the viscous dissipation will be highlighted. The main goal of this work is to demonstrate that the problem of heat transfer enhancement in microdevices cannot be solved by indefinitely reducing the microchannel dimensions because the viscous dissipation effects shall offset the gains of high heat transfer coefficients associated with a reduction in the channel size.

1.
Morini
,
G. L.
, 2004, “
Single-Phase Convective Heat Transfer in Microchannels: A Review of Experimental Results
,”
Int. J. Therm. Sci.
1290-0729,
43
, pp.
631
651
.
2.
Wu
,
P.
, and
Little
,
W. A.
, 1984, “
Measurement of the Heat Transfer Characteristics of Gas Flow in Fine Channel Heat Exchangers Used for Microminiature Refrigerators
,”
Cryogenics
0011-2275,
124
, pp.
415
420
.
3.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,” in
Micromechanical Sensors, Actuators and Systems, ASME DSC 32
, Atlanta, GA, pp.
123
134
.
4.
Yu
,
D.
,
Warrington
,
R. O.
,
Barron
,
R.
, and
Ameel
,
T.
, 1995, “
An Experimental and Theoretical Investigation of Fluid Flow and Heat Transfer in Microtubes
,”
Proc. ASME∕JSME Thermal Eng. Joint Conf.
,
Maui
, pp.
523
530
.
5.
Wang
,
B. X.
, and
Peng
,
X. F.
, 1994, “
Experimental Investigation on Liquid Forced-Convection Heat Transfer Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
Suppl. 1
), pp.
73
82
.
6.
Peng
,
X. F.
, and
Peterson
,
G. P.
, 1996, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
0017-9310,
39
, pp.
2599
2608
.
7.
Nguyen
,
N. T.
,
Bochnia
,
D.
,
Kiehnscherrf
,
R.
, and
Dözel
,
W.
, 1996, “
Investigation of Forced Convection in Microfluid Systems
,”
Sens. Actuators, A
0924-4247,
55
, pp.
49
55
.
8.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
, 1998, “
An Experimental Investigation of Single-Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
851
857
.
9.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
An Experimental Study of Convective Heat Transfer in Silicon Microchannels With Different Surface Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2547
2556
.
10.
Li
,
J.
,
Peterson
,
G. P.
, and
Cheng
,
P.
, 2004, “
Three-Dimensional Analysis of Heat Transfer in a Micro-Heat Sink With Single Phase Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4215
4231
.
11.
Kawano
,
K.
,
Minakami
,
K.
,
Iwasaki
,
H.
, and
Ishizuka
,
M.
, 1998, “
Development of Micro Channels Heat Exchanging, Application of Heat Transfer in Equipment, Systems and Education
,” ASME HTD-361, pp.
173
180
.
12.
Qu
,
W.
, and
Mudawar
,
I.
, 2002, “
Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3973
3985
.
13.
Fedorov
,
A. G.
, and
Viskanta
,
R.
, 2000, “
Three-Dimensional Conjugate Heat Transfer in the Microchannel Heat Sink for Electronic Packaging
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
399
415
.
14.
Qu
,
W.
,
Mala
,
G. M.
, and
Li
,
D.
, 2000, “
Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
3925
3936
.
15.
Gao
,
P.
,
Le Person
,
S.
, and
Favre-Marinet
,
M.
, 2002, “
Scale Effects on Hydrodynamics and Heat Transfer in Two-Dimensional Mini and Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
41
, pp.
1017
1027
.
16.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
, 2005, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1688
1704
.
17.
Grohmann
,
S.
, 2005, “
Measurements and Modeling of Single-Phase and Flow-Boiling Heat Transfer in Microtubes
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
4073
4089
.
18.
Herwig
,
H.
, and
Hausner
,
O.
, 2003, “
Critical View on New Results in Micro-Fluid Mechanics: An Example
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
935
937
.
19.
Guo
,
Z. Y.
, and
Li
,
Z. X.
, 2003, “
Size Effect on Single-Phase Channel Flow and Heat Transfer at Microscale
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
284
298
.
20.
Richter
,
M.
,
Woias
,
P.
, and
Weiß
,
D.
, 1997, “
Microchannels for Applications in Liquid Dosing and Flow-Rate Measurements
,”
Sens. Actuators, A
0924-4247,
62
, pp.
480
483
.
21.
Judy
,
J.
,
Maynes
,
D.
, and
Webb
,
B. W.
, 2002, “
Characterization of Frictional Pressure Drop for Liquid Flows Through Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3477
3489
.
22.
Toh
,
K.
,
Chen
,
X.
, and
Chai
,
J.
, 2002, “
Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
5133
5141
.
23.
Sabry
,
M. N.
, 2000, “
Scale Effects on Fluid Flow and Heat Transfer in Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
23
, pp.
562
567
.
24.
Kandlikar
,
S. G.
,
Joshi
,
S.
, and
Tian
,
S.
, 2001, “
Effect of Channel Roughness on Heat Transfer and Fluid Flow Characteristics at Low Reynolds Numbers in Small Diameter Tubes
,”
Proceedings of 35th National Heat Transfer Conference
,
Anaheim, CA
, Paper No. 12134.
25.
Celata
,
G. P.
,
Cumo
,
M.
,
Guglielmi
,
M.
, and
Zummo
,
G.
, 2000, “
Experimental Investigation of Hydraulic and Single Phase Heat Transfer in 0.130mm Capillary Tube
,”
Proceedings of International Conference On Heat Transfer and Transport Phenomena in Microscale
,
Banff, Canada
, pp.
108
113
.
26.
Croce
,
G.
, and
D’Agaro
,
P.
, 2004, “
Numerical Analysis of Roughness Effect on Microtube Heat Transfer
,”
Superlattices Microstruct.
0749-6036,
35
, pp.
601
616
.
27.
Tso
,
C. P.
, and
Mahulikar
,
S. P.
, 1998, “
The Use of the Brinkman Number for Single Phase Forced Convective Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
1759
1769
.
28.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2001, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2395
2403
.
29.
Xu
,
B.
,
Ooi
,
K. T.
,
Mavriplis
,
C.
, and
Zaghloul
,
M. E.
, 2003, “
Evaluation of Viscous Dissipation in Liquid Flow in Microchannels
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
53
57
.
30.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3159
2169
.
31.
Morini
,
G. L.
, 2003, “
Viscous Heating in Liquid Flows in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3637
3647
.
32.
Morini
,
G. L.
, 2005, “
Viscous Dissipation as Scaling Effect for Liquid Flows in Microchannels
,”
Proc. 3rd ASME Int. Conf. Micro Minichannels ICMM05
,
Toronto
.
33.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Yarin
,
L. P.
, 2005 “
Flow and Heat Transfer in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
1982
1998
.
34.
Shah
,
R. K.
, and
London
,
A. L.
, 1974, “
Thermal Boundary Conditions and Some Solutions for Laminar Duct Flow Forced Convection
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
159
165
.
35.
FLEXPDE™, 1999, Finite Element Software, PDE Solution Inc.
36.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,”
Adv. Heat Transfer
0065-2717,
14
, pp.
196
222
.
37.
Morini
,
G. L.
, 2000, “
Analytical Determination of the Temperature Distribution and Nusselt Numbers in Rectangular Ducts with Constant Axial Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
741
755
.
38.
Morini
,
G. L.
, and
Spiga
,
M.
, 1999, “
Nusselt Numbers in Rectangular Ducts With Viscous Dissipation
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
1083
1087
.
39.
Zanchini
,
E.
, 1997, “
Effect of Viscous Dissipation on the Asymptotic Behaviour of Laminar Forced Convection in Circular Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
169
178
.
40.
Bejan
,
A.
, 1978, “
General Criterion for Rating Heat-Exchanger Performance
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
655
658
.
41.
Sekulic
,
D. P.
,
Campo
,
A.
, and
Morales
,
J. C.
, 1997, “
Irreversibility Phenomena Associated With Heat Transfer and Fluid Friction in Laminar Flows Through Singly Connected Ducts
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
905
914
.
You do not currently have access to this content.