In this work the role of Coriolis forces in the evolution of a two-dimensional thermally driven flow in a rotating enclosure of arbitrary geometry is discussed. Contrary to the claims made in some of the studies involving such class of flows that there is an active involvement of the these forces in the dynamics of the flow, it is shown that the Coriolis force does not play any role in the evolution of the velocity and temperature fields. This is theoretically demonstrated by recognizing the irrotational character of the Coriolis force in such class of flows. It is further shown that the presence of the irrotational Coriolis force affects only the pressure distribution in the rotating enclosure. The theoretical deductions apply quite generally to any geometry and thermal boundary conditions associated with the enclosure. The numerical results for the problem of two-dimensional thermally driven flow of air (Pr=0.71) in a circular rotating enclosure provide direct evidence of the theoretical deductions.

1.
Homsy
,
G. M.
, and
Hudson
,
J. L.
, 1969, “
Centrifugally Driven Thermal Convection in a Rotating Cylinder
,”
J. Fluid Mech.
0022-1120,
35
, Part 1, pp.
33
52
.
2.
Hudson
,
J. L.
,
Tang
,
D.
, and
Abell
,
S.
, 1978, “
Experiments on Centrifugally Driven Thermal Convection in a Rotating Cylinder
,”
J. Fluid Mech.
0022-1120,
86
, Part 1,
147
159
.
3.
Tang
,
D.
, and
Hudson
,
J. L.
, 1983, “
Experiments on a Rotating Fluid Heated From Below
,”
Int. J. Heat Mass Transfer
0017-9310,
26
(
6
),
943
949
.
4.
Somerville
,
R. C. J.
, 1971, “
Bénard Convection in a Rotating Fluid
,”
Geophys. Fluid Dyn.
0309-1929,
2
,
247
262
.
5.
Somerville
,
R. C. J.
, and
Lipps
,
F. B.
, 1973, “
A Numerical Study in Three Space Dimensions of Bénard Convection in a Rotating Fluid
,”
J. Atmos. Sci.
0022-4928,
30
,
590
596
.
6.
Buell
,
J. C.
, and
Catton
,
I.
, 1983, “
Effect of Rotation on the Stability of a Bounded Cylindrical Layer of Fluid Heated From Below
,”
Phys. Fluids
0031-9171,
26
(
4
),
892
896
.
7.
Ker
,
Y. T.
,
Li
,
Y. H.
, and
Lin
,
T. F.
, 1998, “
Experimental Study of Unsteady Thermal Characteristics and Rotation Induced Stabilization of Air Convection in a Bottom Heated Rotating Vertical Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
11
),
1445
1458
.
8.
Bühler
,
K.
, and
Oertel
,
H.
, 1982, “
Thermal Cellular Convection in Rotating Rectangular Boxes
,”
J. Fluid Mech.
0022-1120,
114
,
261
282
.
9.
Abell
,
S.
, and
Hudson
,
J. L.
, 1975, “
An Experimental Study of Centrifugally Driven Free Convection in a Rectangular Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
18
,
1415
1423
.
10.
Ker
,
Y. T.
, and
Lin
,
T. F.
, 1996, “
A Combined Numerical and Experimental Study of Air Convection in a Differentially Heated Rotating Cubic Cavity
,”
Int. J. Heat Mass Transfer
0017-9310,
39
(
15
),
3193
3210
.
11.
Hamady
,
F. J.
,
Lloyd
,
J. R.
,
Yang
,
K. T.
, and
Yang
,
H. Q.
, 1994, “
A Study of Natural Convection in a Rotating Enclosure
,”
J. Heat Transfer
0022-1481,
116
,
136
143
.
12.
Baig
,
M. F.
, and
Masood
,
A.
, 2001, “
Natural Convection in a Two-Dimensional Differentially Heated Square Enclosure Undergoing Rotation
,”
Numer. Heat Transfer, Part A
1040-7782,
40
,
181
202
.
13.
Hasan
,
N.
, and
Sanghi
,
S.
, 2004, “
The Dynamics of Two-Dimensional Buoyancy Driven Convection in a Horizontal Rotating Cylinder
,”
J. Heat Transfer
0022-1481,
126
,
963
984
.
14.
Amsden
,
A. A.
, and
Harlow
,
F. H.
, 1970, “
The SMAC Method: A Numerical Technique for Calculating Incompressible Fluid Flows
,” Los Alamos Scientific Rep. LA 4370.
15.
Cheng
,
L.
, and
Armfield
,
S.
, 1995, “
A Simplified Marker and Cell Method for Unsteady Flows on Non-Staggered Grids
,”
Int. J. Numer. Methods Fluids
0271-2091,
21
,
15
34
.
16.
Ferziger
,
J. H.
, and
Peric
,
M.
, 1996, “
Computational Methods for Fluid Dynamics
,”
Springer-Verlag
, Berlin, Chap. 5, p.
95
.
17.
Rhie
,
C. M.
, and
Chow
,
W. L.
, 1983, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
0001-1452,
21
,
1525
1532
.
18.
Xin
,
S.
,
Quéré
,
P. L.
, and
Daube
,
O.
, 1997, “
Natural Convection in a Differentially Heated Horizontal Cylinder: Effects of Prandtl Number on Flow Structure and Instability
,”
Phys. Fluids
1070-6631,
9
(
4
),
1014
1033
.
You do not currently have access to this content.