Recent work on miscroscale phase-change heat transfer, including flow boiling and flow condensation in microchannnels (with applications to microchannel heat sinks and microheat exchangers) as well as bubble growth and collapse on microheaters under pulse heating (with applications to micropumps and thermal inkjet printerheads), is reviewed. It has been found that isolated bubbles, confined elongated bubbles, annular flow, and mist flow can exist in microchannels during flow boiling. Stable and unstable flow boiling modes may occur in microchannels, depending on the heat to mass flux ratio and inlet subcooling of the liquid. Heat transfer and pressure drop data in flow boiling in microchannels are shown to deviate greatly from correlations for flow boiling in macrochannels. For flow condensation in microchannels, mist flow, annular flow, injection flow, plug-slug flow, and bubbly flows can exist in the microchannels, depending on mass flux and quality. Effects of the dimensionless condensation heat flux and the Reynolds number of saturated steam on transition from annular two-phase flow to slug/plug flow during condensation in microchannels are discussed. Heat transfer and pressured drop data in condensation flow in microchannels, at low mass flux are shown to be higher and lower than those predicted by correlations for condensation flow in macrochannels, respectively. Effects of pulse heating width and heater size on microbubble growth and collapse and its nucleation temperature on a microheater under pulse heating are summarized.

1.
McGlen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
, 2004, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
1359-4311,
24
, pp
1143
116
.
2.
Cheng
,
P.
, and
Wu
,
H. Y.
, 2006, “
Mesoscale and Microscale Phase-Change Heat Transfer
,”
Adv. Heat Transfer
0065-2717,
39
, pp.
461
563
.
3.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanism During Flow Boiling in Microchannels
,”
J. Heat Transfer
0022-1481,
126
, pp.
8
16
.
4.
Hetsronic
,
G.
,
Mosyak
,
A.
, and
Segal
,
Z.
, 2001, “
Nonuniform Temperature Distribution in Electronic Devices Cooled by Flow in Parallel Microchannels
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
24
, pp.
7
23
.
5.
Hetsronic
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G. A.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3275
3286
.
6.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Microchannel Heat Sinks-I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
7.
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part I: Single Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5575
5589
.
8.
Li
,
H. Y.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Bubble Dynamics in Microchannels. Part II: Two Parallel Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5591
5601
.
9.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Microchannels
,”
Int. J. Multiphase Flow
0301-9322,
31
, pp.
371
392
.
10.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2603
2614
.
11.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Liquid/Two-Phase/Vapor Alternating Flow During Boiling in Microchannels at High Heat Flux
,”
Int. Commun. Heat Mass Transfer
0735-1933,
30
, pp.
295
302
.
12.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3631
3641
.
13.
Wang
,
G. D.
,
Cheng
,
P.
, and
Wu
,
H. Y.
, 2006, “
Stable and Unstable Flow Boiling in Microchannels
,” Int. J. Heat Mass Transfer (in press).
14.
Yen
,
T. H.
,
Kasagi
,
N.
, and
Suzuki
,
Y.
, 2003, “
Forced Convective Boiling Heat Transfer in Microtubes at Low Mass and Heat Fluxes
,”
Int. J. Multiphase Flow
0301-9322,
29
, pp.
1771
1792
.
15.
Sumith
,
B.
,
Kaminaga
,
F.
, and
Matsumura
,
K.
, 2003, “
Saurated Flow Boiling of Water in a Vertical Small Diameter Tube
,”
Exp. Therm. Fluid Sci.
0894-1777,
27
, pp.
789
801
.
16.
Lee
,
J.
, and
Mudawa
,
I.
, 2005, “
Two-Phase Flow in High Heat Flux Microchannel Heat Sink for Refrigeration Cooling Applications: Part II-Heat Transfer Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
941
955
.
17.
Lee
,
J.
, and
Mudawa
,
I.
, 2005, “
Two-Phase Flow in High-Heat Flux Microchannel Heat Sink for Refrigeration Cooling Applications: Part I-Pressure Drop Characteristics
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
928
940
.
18.
Tran
,
T. N.
,
Chyu
,
M. C.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
, 2000, “
Two-Phase Pressure Drop of Refrigerants During Flow Boiling in Small Channels: An Experimental Investigation and Correlation Development
,”
Int. J. Multiphase Flow
0301-9322,
26
, pp.
1739
1754
.
19.
Chen
,
Y. P.
, and
Cheng
,
P.
, 2005, “
Condensation of Steam in a Silicon Microchannel
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
, pp.
175
183
.
20.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2005, “
Condensation Flow Patterns in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2186
2197
.
21.
Quan
,
X. J.
,
Cheng
,
P.
, and
Wu
,
H. Y.
, 2006, Transition from Annular to Slug/Bubbly Flow in Condensation in Microchannels, unpublished.
22.
Shin
,
J. S.
, and
Kim
,
M. H.
, 2004, “
An Experimental Study of Flow Condensation Heat Transfer Inside Circular and Rectangular Minichannels
,”
Proc. of 2PndP International Conference, on Microchannel and Microchannels
, pp.
633
640
.
23.
Kim
,
M. H.
,
Shin
,
J. S.
,
Huh
,
C.
,
Ki
,
T. J.
, and
Seo
,
K. W.
, 2003, “
A Study of Condensation Heat Transfer in a Single Mini-tube and a Review of Korean Micro-and Mini-Channel Studies
,”
Proceedings of the 1st International Conference on Microchannel and Minichannels, Rochester, NY, 24–25 April 2003
, pp.
47
58
.
24.
Kobayashi
,
H.
,
Koumura
,
N.
, and
Ohno
,
S.
, 1981, “
Canon Kabushiki Kaisha Liquid Recording Medium
,” US Patent Specification No. 4243994.
25.
Yin
,
Z.
,
Prosperetti
,
A.
, and
Kim
,
J.
, 2004, “
Bubble Growth on an Impulsively Powered Microheater
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1053
1067
.
26.
Deng
,
P. G.
,
Lee
,
Y. K.
, and
Cheng
,
P.
, 2003, “
The Growth and Collapse of a Micro-bubble under Pulse Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4041
4050
.
27.
Okamoto
,
T.
,
Suzuki
,
T.
, and
Yamamoto
,
N.
, 2000, “
Microarray Fabrication With Covalent Attachment of DNA using Bubble Jet Technology
,”
Nat. Biotechnol.
1087-0156,
18
, pp.
438
441
.
28.
Deng
,
P. G.
,
Lee
,
Y. K.
, and
Cheng
,
P.
, 2006, “
Two-Dimensional Micro-Bubble Actuator Array to Enhance Efficiency of Molecular Beacon Based DNA Micro-Biosensors
,”
Biosens. Bioelectron.
0956-5663,
21
, pp.
1443
1450
.
29.
Deng
,
P. G.
,
Lee
,
Y. K.
, and
Cheng
,
P.
, 2004, “
Micro Bubble Dynamics in DNA Solutions
,”
J. Micromech. Microeng.
0960-1317,
14
, pp.
693
701
.
30.
Deng
,
P. G.
,
Lee
,
Y. K.
, and
Cheng
,
P.
, 2005, “
Measurements of Micro Bubble Nucleation Temperatures in DNA Solutions
,”
J. Micromech. Microeng.
0960-1317,
15
, pp.
564
574
.
31.
Deng
,
P. G.
,
Lee
,
Y. K.
, and
Cheng
,
P.
, 2006, “
An Experimental Study of Heater Size Effects on Microbubble Generation
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2535
2544
.
You do not currently have access to this content.