The present paper has investigated the effects of fins on the flow and heat∕mass transfer characteristics for the impingement∕effusion cooling with crossflow. The circular or rectangular fins are installed between two perforated plates, and the crossflow occurs between these two plates. The crossflow blowing ratio is varied from 0.5 to 1.5 for a fixed jet Reynolds number of 10,000. A naphthalene sublimation method is used to obtain local heat∕mass transfer coefficients on the effusion plate. A numerical calculation is also performed to investigate the flow characteristics. The flow and heat∕mass transfer characteristics are changed significantly due to the installation of fins. In the injection hole region, the wall jet spreads more widely than in the case without fins because the fins prevent the wall jet from being swept away by the crossflow. In the effusion hole region, a higher heat∕mass transfer coefficient is obtained due to the flow disturbance and acceleration by the fin. As the blowing ratio increases, the effect of fins against the crossflow becomes more significant and subsequently the higher average heat∕mass transfer coefficients are obtained. In particular, the cases with rectangular fins show an approximately 40–45% enhancement at the high blowing ratio of M=1.5. However, the increase in the blockage effect results in increased pressure loss in the channel.

1.
Hollwarth
,
B. R.
, and
Dagan
,
L.
, 1980, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface Part 1: Average Heat Transfer
,”
J. Eng. Power
0022-0825,
102
, pp.
994
999
.
2.
Hollwarth
,
B. R.
,
Lehmann
,
G.
, and
Rosiczkowski
,
J.
, 1983, “
Arrays of Impinging Jets With Spent Fluid Removal Through Vent Holes on the Target Surface Part 2: Local Heat Transfer
,”
J. Eng. Power
0022-0825,
105
, pp.
393
402
.
3.
Nazari
,
A.
, and
Andrews
,
G. E.
, 1999, “
Impingement∕ Effusion Cooling: Influence of Number of the Holes and Pressure Loss on Film and Heat Transfer Coefficient
,”
Proceedings of Seventh IGTC
, Vol.
2
, pp.
638
648
.
4.
Cho
,
H. H.
, and
Goldstein
,
R. J.
, 1996, “
Effect of Hole Arrangements on Impingement∕Effusion Cooling
,”
Proceeding of the Third KSME-JSME Thermal Engineering Conference
, pp.
71
76
.
5.
Cho
,
H. H.
, and
Rhee
,
D. H.
, 2001, “
Local Heat∕Mass Transfer Measurement on the Effusion Plate in Impingement∕Effusion Cooling System
,”
J. Turbomach.
0889-504X,
123
, pp.
601
608
.
6.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
, 2003, “
Heat (Mass) Transfer on Effusion Plate in Impingement∕Effusion Cooling Systems
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
1
), pp.
95
102
.
7.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
, 2004, “
Effects of Hole Arrangements on Local Heat∕Mass Transfer for Impingement∕Effusion Cooling With Small Hole Spacing
,” ASME Paper No. GT2004-53685.
8.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
, 1984, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
J. Heat Transfer
0022-1481,
106
, pp.
34
41
.
9.
Metzger
,
D. E.
, and
Korstad
,
R. J.
, 1972, “
Effects of Crossflow in Impingement Heat Transfer
,”
ASME J. Eng. Power
0022-0825,
94
, pp.
35
41
.
10.
Huang
,
Y.
,
Ekkad
,
S. V.
, and
Han
,
J. C.
, 1998, “
Detailed Heat Transfer Distributions Under an Array of Orthogonal Impinging Jets
,”
J. Thermophys. Heat Transfer
0887-8722,
12
(
1
), pp.
73
79
.
11.
Haiping
,
C.
,
Wanbing
,
C.
, and
Taiping
,
H.
, 1999, “
3-D Numerical Simulation of Impinging Jet Cooling With Initial Crossflow
,” ASME Paper No. 99-GT-256.
12.
Hwang
,
J. J.
, and
Chang
,
B. Y.
, 2000, “
Effect of Outflow Orientation on Heat Transfer and Pressure Drop in a Triangular Duct With an Array of Tangential Jets
,”
J. Heat Transfer
0022-1481,
122
, pp.
669
678
.
13.
Bailey
,
J. C.
, and
Bunker
,
R. S.
, 2002, “
Local Heat Transfer and Flow Distributions for Impinging Jet Arrays of Dense and Sparse Extent
,” ASME Paper No. GT-2002-30473.
14.
Rhee
,
D. H.
,
Yoon
,
P. H.
, and
Cho
,
H. H.
, 2003, “
Local Heat∕Mass Transfer and Flow Characteristics of Array Impinging Jets With Effusion Holes Ejecting Spent Air
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1049
1061
.
15.
Gao
,
L.
,
Ekkad
,
S. V.
, and
Bunker
,
R. S.
, 2003, “
Impingement Heat Transfer Under Linearly Stretched Arrays of Holes
,” ASME Paper No. GT-2003-38178.
16.
Chambers
,
A. C.
,
Gillespie
,
D. R. H.
,
Ireland
,
P. T.
, and
Dailey
,
G. M.
, 2005, “
The Effect of Initial Crossflow on the Cooling Performance of a Narrow Impingement Channel
,”
J. Heat Transfer
0022-1481,
127
, pp.
358
365
.
17.
Ekkad
,
S. V.
,
Huang
,
Y.
, and
Han
,
J. C.
, 1999, “
Impingement Heat Transfer on a Target Plate With Film Cooling Holes
,”
J. Thermophys. Heat Transfer
0887-8722,
13
(
4
), pp.
522
528
.
18.
Rhee
,
D. H.
,
Choi
,
J. H.
, and
Cho
,
H. H.
, 2003, “
Flow and Heat (Mass) Transfer Characteristics in an Impingement∕Effusion Cooling System With Crossflow
,”
J. Turbomach.
0889-504X,
125
, pp.
74
82
.
19.
Haiping
,
C.
,
Jingyu
,
Z.
, and
Taiping
,
H.
, 1998, “
Experimental Investigation on Impingement Heat Transfer From Rib Roughened Surface Within Arrays of Circular Jets: Effect of Geometric Parameters
,” ASME Paper No. 98-GT-208.
20.
Andrews
,
G. E.
,
Abdul Hussain
,
R. A. A.
, and
Mkpadi
,
M. C.
, 2003, “
Enhanced Impingement Heat Transfer: Comparison of Co-flow and Cross-flow With Rib Turbulators
,”
Proceedings of IGTC2003
, Paper No. IGTC2003Tokyo TS-075.
21.
Rhee
,
D. H.
,
Nam
,
Y. W.
, and
Cho
,
H. H.
, 2005, “
Local Heat∕Mass Transfer With Various Rib Arrangements in Impingement∕Effusion Cooling System With Crossflow
,”
J. Turbomach.
0889-504X,
126
, pp.
615
626
.
22.
Andrews
,
G. E.
,
Abdul Hussain
,
R. A. A.
, and
Mkpadi
,
M. C
, 2006, “
Enhanced Impingement Heat Transfer: The Influence of Impingement X∕D for Interrupted Rib Obstacles (Rectangular Pin Fins)
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
321
331
.
23.
Annerfeldt
,
M. O.
,
Persson
,
J. L.
, and
Torison
,
T.
, 2001, “
Experimental Investigation of Impingement Cooling With Turbulators or Surface Enlarging Elements
,” ASME Paper No. 2001-GT-0149.
24.
Funazaki
,
K.
,
Tarukawa
,
Y.
,
Kudo
,
T.
,
Mastsuno
,
S.
,
Imai
,
R.
, and
Yamawki
,
S.
, 2001, “
Heat Transfer Characteristics of an Integrated Cooling Configuration for Ultra-High Temperature Turbine Blades: Experimental and Numerical Investigations
,” ASME Paper No. 2001-GT-0148.
25.
Yamawki
,
S.
,
Nakamata
,
C.
,
Imai
,
R.
,
Mastsuno
,
S.
,
Yoshida
,
T.
,
Mimura
,
F.
, and
Kumada
,
M.
, 2003, “
Cooling Performance of an Integrated Impingement and Pin Fin Cooling Configuration
,” ASME Paper No. GT-2003-38215.
26.
Cho
,
H. H.
, and
Goldstein
,
R. J.
, 1995, “
Heat (Mass) Transfer and Film Cooling Effectiveness With Injection Through Discrete Holes. Part I: Within Holes and on the Back Surface
,”
J. Turbomach.
0889-504X,
117
, pp.
440
450
.
27.
Ambrose
,
D.
,
Lawrenson
,
I. J.
, and
Sparke
,
C. H. S.
, 1975, “
The Vapor Pressure of Naphthalene
,”
J. Chem. Thermodyn.
0021-9614,
7
, pp.
1173
1176
.
28.
Goldstein
,
R. J.
, and
Cho
,
H. H.
, 1995, “
A Review of Mass Transfer Measurement Using Naphthalene Sublimation
,”
Exp. Therm. Fluid Sci.
0894-1777,
10
, pp.
416
434
.
29.
Eckert
,
E. R. G.
, 1976,
Analogies to Heat Transfer Processes
,
in Measurements in Heat Transfer
,
E. R. G.
Eckert
, and
R. J.
Goldstein
, eds.,
Hemisphere
,
New York
, pp.
397
423
.
30.
Kline
,
S. J.
, and
McClintock
,
F.
, 1953, “
Describing Uncertainty in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
31.
Cho
,
H. H.
, 1992, “
Heat∕Mass Transfer Flow Through an Array of Holes and Slits
,” Ph. D. thesis, University of Minnesota, Twin Cities.
32.
2001, Fluent 6.1 User’s Guide, Vol.
5
, Chaps. 22–16.
33.
Goldstein
,
R. J.
,
Chyu
,
M. K.
, and
Hain
,
R. C.
, 1985, “
Measurement of Local Mass Transfer on a Surface in the Region of the Base of a Protruding Cylinder With a Computer-Controlled Data Acquisition System
,”
Int. J. Heat Mass Transfer
0017-9310,
28
, pp.
977
985
.
34.
Chyu
,
M. K.
,
Hsing
,
Y. C.
,
Shih
,
T. I.-P.
, and
Natarajan
,
V.
, 1999, “
Heat Transfer Contributions of Pins and Endwall in Pin-Fin Arrays: Effects of Thermal Boundary Condition Modeling
,”
J. Turbomach.
0889-504X,
121
, pp.
257
263
.
35.
Won
,
S. Y.
,
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2004, “
Spatially-Resolved Heat Transfer and Flow Structure in a Rectangular Channel With Pin Fins
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
1731
1743
.
36.
Dittus
,
P. W.
, and
Boelter
,
L. M. K.
, 1930,
Univ. Calif. Publ. Eng.
0096-9311,
2
(
13
), pp.
443
461
;
1985,
Int. Commun. Heat Mass Transfer
0735-1933,
12
, pp.
3
22
.
37.
Goldstein
,
R. J.
,
Cho
,
H. H.
, and
Jabbari
,
M. Y.
, 1997, “
Effect of Plenum Crossflow on Heat (Mass) Transfer Near and Within the Entrance of Film Cooling Holes
,”
J. Turbomach.
0889-504X,
119
, pp.
761
769
.
You do not currently have access to this content.