In this paper, we present a transient mathematical model for a V-shaped microgrooved heat pipe considering the temporal variations in the fluid flow, and heat and mass transfer, and utilizing a macroscopic approach. Unlike other heat pipe models, the shear stress at the liquid-vapor interface and the disjoining pressure have been used in the momentum balance equation of the model. The sensible heat used by the substrate is also taken into account using a pseudo-lump capacity model. The coupled nonlinear partial differential equations governing the transient fluid flow, heat and mass transfer have been solved numerically. The transient and steady-state profiles for the radius of curvature, liquid and vapor velocity, liquid pressure, and substrate temperature have been obtained. The mathematical model is capable of predicting the time required for the onset of dry out at the hot end, and for a micro heat pipe to reach steady state. The time required to reach steady state is independent of heat input, heat pipe inclination, groove angle, and Qss profile. However, the time required for the onset of dry out at the hot end decreases with increasing heat input, inclination, and groove angle. The model predicted results have been successfully compared to the results from the literature. The general nature of this model and the associated study can be useful for many practical applications in the microscale heat exchange.

1.
Camarda
,
C. J.
,
Rummler
,
D. R.
, and
Peterson
,
G. P.
, 1991, “
Multi Heat Pipe Panels
,” Report No. LAR-14150, NASA Technical Briefs.
2.
Badran
,
B.
,
Albayyari
,
J. M.
,
Gerner
,
F. M.
,
Ramadas
,
P.
,
Henderson
,
H. T.
, and
Baker
,
K.
, 1993, “
Liquid-Metal Micro Heat Pipes
,”
Heat Pipes and Capillary Pumped Loops
,
Faghri
,
A.
,
Juhasz
,
A. J.
, and
Mahefkey
,
T.
,
ASME
, New York, HTD
236
, pp.
71
85
.
3.
Cotter
,
T. P.
, 1984, “
Principles and Prospects of Micro Heat Pipes
,”
Proc. of the 5th Int. Heat Pipe Conference
, Tsukuba, Japan, pp.
328
332
.
4.
DasGupta
,
S.
,
Schonberg
,
J. A.
,
Kim
,
I. Y.
, and
Wayner
,
P. C.
, Jr.
, 1993, “
Use of Augmented Yong–Laplace Equation to Model Equilibrium and Evaporation Extended Menisci
,”
J. Colloid Interface Sci.
0021-9797,
157
, pp.
332
342
.
5.
DasGupta
,
S.
,
Schonberg
,
J. A.
, and
Wayner
,
P. C.
, Jr.
, 1993, “
Investigation of an Evaporative Extended Meniscus Based on the Augmented Yong–Laplace Equation
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
201
208
.
6.
Suman
,
B.
, and
Hoda
,
N.
, 2005, “
Effect of Variations in Thermophysical Properties and Design Parameters on the Performance of a V-Shaped Micro Grooved Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
10
), pp.
2090
2101
.
7.
Suman
,
B.
, 2007, “
Modeling, Experiment and Fabrication of Micro Heat Pipes: An Update
,”
Appl. Mech. Rev.
0003-6900,
60
, pp.
107
119
.
8.
Wu
,
D.
, and
Peterson
,
G. P.
, 1991, “
Investigation of the Transient Characteristics of a Micro Heat Pipe
,”
J. Thermophys. Heat Transfer
0887-8722,
5
, pp.
129
134
.
9.
Wu
,
D.
,
Peterson
,
G. P.
and
Chang
,
W. S.
, 1991, “
Transient Experimental Investigation of Micro Heat Pipes
,”
J. Thermophys. Heat Transfer
0887-8722,
5
, pp.
539
545
.
10.
Peterson
,
G. P.
, and
Mallik
,
A. K.
, 1995, “
Transient Response Characteristics of Vapor Deposited Micro Heat Pipe
,”
ASME J. Electron. Packag.
1043-7398,
117
(
1
), pp.
82
87
.
11.
Chang
,
W. S.
, and
Colwell
,
G. T.
, 1985, “
Mathematical Modeling of the Transient Operation Characteristics of a Low Temperature Heat Pipe
,”
Numer. Heat Transfer
0149-5720,
8
, pp.
169
186
.
12.
Colwell
,
G. T.
, and
Chang
,
W. S.
, 1983, “
Measurement of Transient Behavior of a Capillary Structure Under the Heavy Thermal Loading
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
541
551
.
13.
Faghri
,
A.
, and
Chen
,
M. M.
, 1989, “
A Numerical Analysis of the Effects of Conjugate Heat Transfer, Vapor Compressibility, and Viscous Dissipation in Heat Pipe
,”
Numer. Heat Transfer, Part A
1040-7782,
16
, pp.
389
405
.
14.
Turnier
,
J. M.
, and
El-Genk
,
M. S.
, 1994, “
A Heat Pipe Transient Analysis Model
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
753
762
.
15.
Wang
,
Y.
, and
Vafai
,
K.
, 2000, “
An Experimental Investigation of the Transient Characteristics on a Flat Plate Heat Pipe During Startup and Shutdown Operations
,”
ASME J. Heat Transfer
0022-1481,
122
, p.
525
.
16.
Chang
,
W. S.
, 1981, “
Heat Pipe Start Up From the Supercritical State
,” Ph.D. desertion, School of Mechanical Engineering, Georgia Institute of Technology.
17.
Zhu
,
N.
, and
Vafai
,
K.
, 1998, “
Analytical Modeling of Startup Characteristics of Asymmetric Flat-Plate and Disc-Shaped Heat Pipes
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
17
), pp.
2619
2637
.
18.
Suman
,
B.
,
De
,
S.
, and
DasGupta
,
S.
, 2005, “
Transient Modeling of a Micro Groove Heat Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1633
1646
.
19.
Ravikumar
,
M.
, and
DasGupta
,
S.
, 1997, “
Modeling of Evaporation From V-Shaped Microgrooves
,”
Chem. Eng. Commun.
0098-6445,
160
, pp.
225
248
.
20.
Peterson
,
G. P.
, and
Ma
,
H. B.
, 1996, “
Theoretical Analysis of the Maximum Heat Transport in Triangular Grooves: A Study of Idealized Micro Heat Pipe
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
731
739
.
21.
Catton
,
I.
, and
Stores
,
G. R.
, 2002, “
A Semi-Analytical Model to Predict the Capillary Limit of Heated Inclined Triangular Capillary Grooves
,”
ASME J. Heat Transfer
0022-1481
124
, pp.
162
168
.
22.
Suh
,
J. S.
,
Greif
,
R.
, and
Grigoropouls
,
C.
, 2001, “
Friction in Micro-Channel Flows of a Liquid and Vapor in Trapezoidal and Sinusoidal Grooves
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
3103
3109
.
23.
Blangetti
,
F.
, and
Naushahi
,
M. K.
, 1980, “
Influence of Mass Transfer on the Momentum Transfer in Condensation and Evaporation Phenomena
,”
Int. J. Heat Mass Transfer
0017-9310,
23
, pp.
1694
1695
.
24.
Suman
,
B.
,
De
,
S.
, and
DasGupta
,
S.
, 2005, “
A Model of the Capillary Limit of a Micro Grooved Heat Pipe and the Prediction of Dry Out Length
,”
Int. J. Heat Fluid Flow
0142-727X,
26
(
3
), pp.
495
505
.
25.
Ha
,
J. M.
, and
Peterson
,
G. P.
, 1998, “
Analytical Prediction of Axial Dry-Out Point for Evaporating Liquids in Axial Microgrooves
,”
ASME J. Heat Transfer
0022-1481,
120
, pp.
452
457
.
26.
Anand
,
S.
,
De
,
S.
, and
DasGupta
,
S.
, 2002, “
Experimental and Theoretical Study of Axial Dry-Out Point for Evaporative From V-Shaped Microgrooves
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1535
1543
.
27.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
, 2000,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
Wiley
, New York.
This content is only available via PDF.
You do not currently have access to this content.