We describe the implementation of an interpolation technique, which allows the accurate imposition of the Dirichlet, Neumann, and mixed (Robin) boundary conditions on complex geometries using the immersed-boundary technique on Cartesian grids, where the interface effects are transmitted through forcing functions. The scheme is general in that it does not involve any special treatment to handle either one of the three types of boundary conditions. The accuracy of the interpolation algorithm on the boundary is assessed using several two- and three-dimensional heat transfer problems: (1) forced convection over cylinders placed in an unbounded flow, (2) natural convection on a cylinder placed inside a cavity, (3) heat diffusion inside an annulus, and (4) forced convection around a stationary sphere. The results show that the scheme preserves the second-order accuracy of the equations solver and are in agreement with analytical and/or numerical data.

1.
Peskin
,
C. S.
, 1972, “
Flow Patterns Around Heart Valves: A Numerical Method
,”
J. Comput. Phys.
0021-9991,
10
, pp.
252
271
.
2.
Peskin
,
C. S.
, 2002, “
The Immersed Boundary Method
,”
Acta Numerica
0962-4929,
11
, pp.
479
517
.
3.
Udaykumar
,
H. S.
,
Mittal
,
R.
, and
Rampunggoon
,
P.
, 2002, “
Interface Tracking Finite Volume Method for Complex Solid-Fluid Interactions on Fixed Meshes
,”
Commun. Numer. Methods Eng.
1069-8299,
18
, pp.
89
97
.
4.
Marella
,
S.
,
Krishnan
,
S.
,
Liu
,
H.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method I: An Easily Implemented Technique for 3D Moving Boundary Computations
,”
J. Comput. Phys.
0021-9991,
210
, pp.
1
31
.
5.
Liu
,
H.
,
Krishnan
,
S.
,
Marella
,
S.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method II: A Technique for Simulating Droplet Impact on Surfaces of Arbitrary Shape
,”
J. Comput. Phys.
0021-9991,
210
, pp.
32
54
.
6.
Yang
,
Y.
, and
Udaykumar
,
H. S.
, 2005, “
Sharp Interface Cartesian Grid Method III: Solidification of Pure Materials and Binary Solutions
,”
J. Comput. Phys.
0021-9991,
210
, pp.
55
74
.
7.
Lee
,
L.
,
Li
,
Z.
, and
LeVeque
,
R. J.
, 2003, “
An Immersed Interface Method for Incompressible Navier-Stokes Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
25
(
3
), pp.
832
856
.
8.
Barozzi
,
G. S.
,
Bussi
,
C.
, and
Corticelli
,
M. A.
, 2004, “
A Fast Cartesian Scheme for Unsteady Heat Diffusion on Irregular Domains
,”
Numer. Heat Transfer, Part B
1040-7790,
46
(
1
), pp.
59
77
.
9.
Fogelson
,
A. L.
, and
Keener
,
J. P.
, 2001, “
Immersed Interface Methods For Neumann and Related Problems in Two and Three Dimensions
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
22
(
5
), pp.
1630
1654
.
10.
Kim
,
J.
,
Kim
,
D.
, and
Choi
,
H.
, 2001, “
An Immersed-Boundary Finite-Volume Method For Simulations Of Flow In Complex Geometries
,”
J. Comput. Phys.
0021-9991,
171
, pp.
132
150
.
11.
Zhang
,
L.
,
Gerstenberger
,
A.
,
Wang
,
X.
, and
Liu
,
W. K.
, 2004, “
Immersed Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
193
, pp.
2051
2067
.
12.
Kim
,
J.
, and
Choi
,
H.
, 2004, “
An Immersed-Boundary Finite-Volume Method for Simulations of Heat Transfer in Complex Geometries
,”
KSME Int. J.
1226-4865,
18
(
6
), pp.
1026
1035
.
13.
Pacheco
,
J. R.
,
Pacheco-Vega
,
A.
,
Rodić
,
T.
, and
Peck
,
R. E.
, 2005, “
Numerical Simulations of Heat Transfer and Fluid Flow Problems Using an Immersed-Boundary Finite-Volume Method on Nonstaggered Grids
,”
Numer. Heat Transfer, Part B
1040-7790,
48
, pp.
1
24
.
14.
Fadlun
,
E. A.
,
Verzicco
,
R.
,
Orlandi
,
P.
, and
Mohd-Yusof
,
J.
, 2000, “
Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations
,”
J. Comput. Phys.
0021-9991,
161
, pp.
35
60
.
15.
Mittal
,
R.
, and
Iaccarino
,
G.
, 2005, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
0066-4189,
37
, pp.
239
261
.
16.
Tyagi
,
M.
, and
Acharya
,
S.
, 2005, “
Large Eddy Simulation of Turbulent Flows in Complex and Moving Rigid Geometries Using the Immersed Boundary Method
,”
Int. J. Numer. Methods Fluids
0271-2091,
48
, pp.
691
722
.
17.
Deuflhard
,
P.
, and
Hochmuth
,
R.
, 2004, “
Multiscale Analysis of Thermoregulation in the Human Microvascular System
,”
Math. Methods Appl. Sci.
0170-4214,
27
, pp.
971
989
.
18.
Oyanader
,
M. A.
,
Arce
,
P.
, and
Dzurik
,
A.
, 2003, “
Avoiding Pitfalls in Electrokinetic Remediation: Robust Design and Operation Criteria Based on First Principles For Maximizing Performance in a Rectangular Geometry
,”
Electrophoresis
0173-0835,
24
(
19–20
), pp.
3457
3466
.
19.
DeLima-Silva
,
W.
, Jr.
, and
Wrobel
,
L. C.
, 1995, “
A Front-Tracking BEM Formulation for One-Phase Solidification/Melting Problems
,”
Eng. Anal. Boundary Elem.
0955-7997,
16
, pp.
171
182
.
20.
Amaziane
,
B.
, and
Pankratov
,
L.
, 2006, “
Homogenization Of A Reaction-Diffusion Equation With Robin Interface Conditions
,”
Appl. Math. Lett.
0893-9659,
19
(
11
), pp.
1175
1179
.
21.
Sparrow
,
E. M.
, and
Gregg
,
J. L.
, 1958, “
Similar Solutions for Free Convection From a Non-Isothermal Vertical Plate
,”
ASME J. Heat Transfer
0022-1481,
80
, pp.
379
386
.
22.
Leonard
,
B. P.
, 1979, “
A Stable And Accurate Convective Modelling Procedure Based on Quadratic Upstream Interpolation
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
19
, pp.
59
98
.
23.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. F.
, 1994, “
A Non-Staggered Grid, Fractional Step Method for Time Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
0021-9991,
114
, pp.
18
33
.
24.
Pacheco
,
J. R.
, 1999, “
On the Numerical Solution of Film and Jet Flows
,” Ph.D thesis, Department Mechanical and Aerospace Engineering, Arizona State University, Tempe.
25.
Pacheco
,
J. R.
, and
Peck
,
R. E.
, 2000, “
Non-Staggered Grid Boundary-Fitted Coordinate Method for Free Surface Flows
,”
Numer. Heat Transfer, Part B
1040-7790,
37
, pp.
267
291
.
26.
Pacheco
,
J. R.
, 2001, “
The Solution of Viscous Incompressible Jet Flows Using Non-Staggered Boundary Fitted Coordinate Methods
,”
Int. J. Numer. Methods Fluids
0271-2091,
35
, pp.
71
91
.
27.
Mohd-Yusof
,
J.
, 1997, “
Combined Immersed-Boundary/B-Spline Methods For Simulations of Flows in Complex Geometries
,” CTR Annual Research Briefs, NASA Ames/Stanford University, Stanford, CA, pp.
317
327
.
28.
Orlanski
,
I.
, 1976, “
A Simple Boundary Condition For Unbounded Hyperbolic Flows
,”
J. Comput. Phys.
0021-9991,
21
, pp.
251
269
.
29.
Eckert
,
E. R. G.
, and
Soehngen
,
E.
, 1952, “
Distribution of Heat-Transfer Coefficients Around Circular Cylinders in Crossflow At Reynolds Numbers From 20 to 500
,”
Trans. ASME
0097-6822,
75
, pp.
343
347
.
30.
Pan
,
D.
, 2006, “
An Immersed Boundary Method on Unstructured Cartesian Meshes for Incompressible Flows With Heat Transfer
,”
Numer. Heat Transfer, Part B
1040-7790,
49
, pp.
277
297
.
31.
Lima E Silva
,
A. L. F.
,
Silveira-Neto
,
A.
, and
Damasceno
,
J. J. R.
, 2003, “
Numerical Simulation of Two-Dimensional Flows over a Circular Cylinder Using the Immersed Boundary Method
,”
J. Comput. Phys.
0021-9991,
189
, pp.
351
370
.
32.
Strykowski
,
P. J.
, and
Sreenivasan
,
K. R.
, 1990, “
On the Formation and Suppression of Vortex Shedding at Low Reynolds Numbers
,”
J. Fluid Mech.
0022-1120,
218
, pp.
71
107
.
33.
Moukalled
,
F.
, and
Darwish
,
M.
, 1997, “
New Bounded Skew Central Difference Scheme, Part II: Application to Natural Convection in an Eccentric Annulus
,”
Numer. Heat Transfer, Part B
1040-7790,
31
, pp.
111
133
.
34.
Sadat
,
H.
, and
Couturier
,
S.
, 2000, “
Performance and Accuracy of a Meshless Method for Laminar Natural Convection
,”
Numer. Heat Transfer, Part B
1040-7790,
37
, pp.
455
467
.
35.
Demirdžić
,
I.
,
Lilek
,
Ž.
, and
Perić
,
M.
, 1992, “
Fluid Flow and Heat Transfer Test Problems for Nonorthogonal Grids: Bench-Mark Solutions
,”
Int. J. Numer. Methods Fluids
0271-2091,
15
, pp.
329
354
.
36.
Carslaw
,
H. S.
, and
Jaeger
,
J. C.
, 1986,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
Oxford
.
37.
Özisik
,
M. N.
, 1989,
Boundary Value Problems of Heat Conduction
, Dover, Mineola, NY.
38.
Johnson
,
T. A.
, and
Patel
,
V. C.
, 1999, “
Flow Past a Sphere up to Reynolds Number of 300
,”
J. Fluid Mech.
0022-1120,
378
, pp.
19
70
.
39.
Magarvey
,
R. H.
, and
Bishop
,
R. L.
, 1961, “
Transition Ranges for Three-Dimensional Wakes
,”
Can. J. Phys.
0008-4204,
39
, pp.
1418
1422
.
40.
Feng
,
Z.-G.
, and
Michaelides
,
E. E.
, 2000, “
A Numerical Study on the Transient Heat Transfer From a Sphere at High Reynolds and Peclet Numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
43
, pp.
219
229
.
41.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
, 1988, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Proceedings of the 1988 CTR Summer Program
,
NASA Ames/Stanford University
, Stanford, CA, pp.
193
208
.
42.
Constantinescu
,
S. G.
, and
Squires
,
K. D.
, 2004, “
Numerical Investigation of the Flow Over a Sphere in the Subcritical and Supercritical Regimes
,”
Phys. Fluids
1070-6631,
16
(
5
), pp.
1449
1467
.
43.
Jeong
,
J.
, and
Hussain
,
F.
, 1995, “
On the Identification of a Vortex
,”
J. Fluid Mech.
0022-1120,
285
, pp.
69
94
.
You do not currently have access to this content.