Image analyzing interferometry was used to study the spreading characteristics of an evaporating octane meniscus (purity: 99+%) on a quartz surface. The thickness, slope, and curvature profiles in the contact line region of the meniscus were obtained using a microscopic data analysis procedure. The results obtained for the octane were compared to that of pure pentane (purity: >99.8%) under similar operating conditions. Isothermal experimental conditions of the menisci were used for the in situ estimation of the retarded dispersion constant. The experimental results for the pure pentane demonstrate that the disjoining pressure (the intermolecular interactions) in the thin-film region controls the fluid flow. Also, an imbalance between the disjoining pressure in the thin-film region and the capillary pressure in the thicker meniscus region resulted in a creeping evaporating pentane meniscus, which spreads over the solid (quartz) surface. On the contrary, for less pure octane, the intermolecular interactions between octane and quartz had a significantly different contribution for fluid flow, and hence, the octane meniscus of lower purity did not creep over the quartz surface. As a result, we had a stationary, evaporating octane meniscus. Using the experimental data and a simple model for the velocity distribution, we evaluated the Marangoni shear in a portion of the stationary, evaporating octane meniscus. An extremely small change in the concentration due to distillation had a significant effect on fluid flow and microscale heat transfer. Also, it was found that nonidealities in small interfacial systems, i.e., the presence of impurities in the working fluid, can have a significant effect on the thickness of the adsorbed film, the heat flux, the spreading characteristics of an almost pure fluid, and, therefore, the assumptions in modeling.

1.
Panchamgam
,
S. S.
,
Gokhale
,
S. J.
,
Plawsky
,
J. L.
,
DasGupta
,
S.
, and
Wayner
, Jr.,
P. C.
, 2005. “
Experimental Determination of the Effect of Disjoining Pressure on Shear in the Contact Line Region of a Moving Evaporating Thin Film
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
231
243
.
2.
Panchamgam
,
S. S.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
, 2006. “
Microscale Heat Transfer in an Evaporating Moving Extended Meniscus
,”
Exp. Therm. Fluid Sci.
0894-1777,
30
, pp.
745
754
.
3.
Potash
, Jr.,
M.
, and
Wayner
, Jr.,
P. C.
, 1972. “
Evaporation From a Two-dimensional Extended Meniscus
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1851
1863
.
4.
Derjaguin
,
B. V.
, and
Zorin
,
A. M.
, 1957. “
Optical Study of the Adsorption and Surface Condensation of Vapors in the Vicinity of Saturation on a Smooth Surface
,”
Proc. of 2nd Int. Congress Surface Activity (London)
, Vol.
2
, pp.
145
152
.
5.
Derjaguin
,
B. V.
,
Nerpin
,
S. V.
, and
Churaev
,
N. V.
, 1965. “
Effect of Film Transfer Upon Evaporation of Liquids From Capillaries
,”
Bull. Rilem
,
29
, pp.
93
98
.
6.
Holm
,
F. W.
, and
Goplen
,
S. P.
, 1979. “
Heat Transfer in the Meniscus Thin Film Region
,”
ASME J. Heat Transfer
0022-1481,
101
, pp.
543
547
.
7.
Moosman
,
S.
, and
Homsy
,
S. M.
, 1980. “
Evaporating Menisci of Wetting Fluids
,”
J. Colloid Interface Sci.
0021-9797,
73
, pp.
212
223
.
8.
Wayner
, Jr.,
P. C.
, 1991. “
The Effect of Interfacial Mass Transport on Flow in Thin Liquid Films
,”
Colloids Surf.
0166-6622,
53
, pp.
71
84
.
9.
Stephan
,
P.
, and
Busse
,
C. A.
, 1992. “
Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
383
391
.
10.
Swanson
,
L. W.
, and
Peterson
,
G. P.
, 1995. “
The Interfacial Thermodynamics of Micro Heat Pipes
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
195
201
.
11.
Wayner
, Jr.,
P. C.
, 1999. “
Intermolecular Forces in Phase-Change Heat Transfer: 1998 Kern Award Review
,”
AIChE J.
0001-1541,
45
, pp.
2055
2067
.
12.
Sodtke
,
C.
,
Kern
,
J.
,
Schweizer
,
N.
, and
Stephan
,
P.
, 2006. “
High Resolution Measurements of Wall Temperature Distribution Underneath a Single Vapor Bubble Under Low Gravity Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
1100
1106
.
13.
Wayner
, Jr.,
P. C.
,
Tung
,
C. Y.
,
Tirumala
,
M.
, and
Yang
,
J. H.
, 1985. “
Experimental Study of Evaporation in the Contact Line Region of a Thin Film of Hexane
,”
ASME J. Heat Transfer
0022-1481,
107
, pp.
182
189
.
14.
Parks
,
C. J.
, and
Wayner
, Jr.,
P. C.
, 1987. “
Surface Shear Near the Contact Line of a Binary Evaporating Curved Thin Film
,”
AIChE J.
0001-1541,
33
, pp.
1
10
.
15.
Kern
,
J.
, and
Stephan
,
P.
, 2003. “
Theoretical Model for Nucleate Boiling Heat and Mass Transfer of Binary Mixtures
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
1106
1115
.
16.
Pratt
,
D. M.
, and
Kihm
,
K. D.
, 2003. “
Binary Fluid Mixture and Thermocapillary Effects on the Wetting Characteristics of a Heated Curved Meniscus
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
867
874
.
17.
Wee
,
S.-K.
,
Kihm
,
K. D.
,
Pratt
,
D. M.
, and
Allen
,
J. S.
, 2006. “
Microscale Heat and Mass Transport of Evaporating Thin Film of Binary Mixture
,”
J. Thermophys. Heat Transfer
0887-8722,
20
(
2
) pp.
320
326
.
18.
Panchamgam
,
S. S.
,
Plawsky
,
J. L.
, and
Wayner
, Jr.,
P. C.
, 2006. “
Spreading Characteristics and Microscale Evaporative Heat Transfer in an Ultrathin Film Containing a Binary Mixture
,”
ASME J. Heat Transfer
0022-1481,
128
(
12
) pp.
1266
1275
.
19.
Wayner
, Jr.,
P. C.
, 1994. “
Mechanical and Thermal Effects in the Forced Spreading of a Liquid Film With a Finite Contact Angle
,”
Colloids Surf., A
0927-7757,
89
pp.
89
95
.
20.
Pesach
,
D.
, and
Marmur
,
A.
, 1987. “
Marangoni Effects in the Spreading of Liquid Mixtures on a Solid
,”
Langmuir
0743-7463,
3
, pp.
519
524
.
21.
Kavehpour
,
P.
,
Ovryn
,
B.
, and
McKinley
,
G. H.
,
, 2002, ”
Evaporatively-Driven Marangoni Instabilities of Volatile Liquid Films Spreading on Thermally Conductive Substrates
,”
Colloids Surf., A
0927-7757,
206
, pp.
409
423
.
22.
Bankoff
,
S. G.
,
, 1990, “
Dynamics and Stability of Thin Heated Liquid Films
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
538
546
.
23.
Cazabat
,
A. M.
,
,
Heslot
,
F.
,
Carles
,
P.
, and
Troian
,
S. M.
,
, 1992, “
Hydrodynamic Fingering Instability of Driven Wetting Films
,”
Adv. Colloid Interface Sci.
0001-8686,
39
, pp.
61
75
.
24.
Sharma
,
A.
, 1998, “
Equilibrium and Dynamics of Evaporating or Condensing Thin Fluid Domains: Thin Film Stability and Heterogeneous Nucleation
,”
Langmuir
0743-7463,
14
, pp.
4915
4928
.
25.
Hosoi
,
A. E.
, and
Bush
,
J. W. M.
,
, 2001, “
Evaporative Instabilities in Climbing Films
,”
J. Fluid Mech.
0022-1120,
442
, pp.
217
239
.
26.
Panchamgam
,
S. S.
, 2006, “
Interfacial Phenomena and Microscale Transport Processes in Evaporating Ultrathin Menisci
,” Ph.D. thesis, Rensselaer Polytechnic Institute, Troy, NY, pp.
221
227
.
27.
2003,
CRC Handbook of Chemistry and Physics
,
84 ed.
,
CRC Press
, Boca Raton.
28.
1997,
Perry’s Chemical Engineers’ Handbook
,
7th ed.
,
McGraw-Hill
, New York.
You do not currently have access to this content.