The present work deals with thermal optimization of an internally finned tube having axial straight fins with axially uniform heat flux and peripherally uniform temperature at the wall. The physical domain was divided into two regions: One is the central cylindrical region of the fluid extending to the tips of the fins and the other constituted the remainder of the tube area. The latter region including the fins was modeled as a fluid-saturated porous medium. The Brinkman-extended Darcy equation for fluid flow and two-equation model for heat transfer were used in the porous region, while the classical Navier–Stokes and energy equations were used in the central cylindrical region. The analytical solutions for the velocity and temperature profiles were in close agreement with the corresponding numerical solution as well as with existing theoretical and experimental data. Finally, optimum conditions, where the thermal performance of the internally finned tube is maximized, were determined using the developed analytical solutions.

1.
Bergles
,
A. E.
, 1997, “
Heat Transfer Enhancement—The Encouragement and Accommodation of High Heat Fluxes
,”
ASME J. Heat Transfer
0022-1481,
119
(
1
), pp.
8
19
.
2.
Webb
,
R. L.
, and
Kim
,
N. H.
, 2005,
Principles of Enhanced Heat Transfer
,
2nd ed.
,
Taylor & Francis
,
New York
.
3.
Kays
,
W. M.
, and
London
,
A. L.
, 1964,
Compact Heat Exchangers
,
2nd ed.
,
McGraw-Hill
,
New York
.
4.
Fraas
,
A. P.
, and
Qzisik
,
M. N.
, 1965,
Heat Exchanger Design
,
Wiley
,
New York
.
5.
Watkinson
,
A. P.
,
Millet
,
D. L.
, and
Kubanek
,
G. R.
, 1975, “
Heat Transfer and Pressure Drop of Internally Finned Tubes in Laminar Oil Flow
,” ASME Paper No. 75-HT-41.
6.
Marner
,
W. J.
, and
Bergles
,
A. E.
, 1978, “
Augmentation of Tube-Side Laminar Flow Heat Transfer by Means of Twisted-Tape Insert, Static-Mixers Inserts, and Internally Finned Tubes
,”
Proceedings of the 6th International Heat Transfer Conference
,
Toronto
,
Hemisphere Pub. Corp.
,
Washington, DC
, Vol.
2
, pp.
583
588
.
7.
Rustum
,
I. M.
, and
Soliman
,
H. M.
, 1988, “
Experimental Investigation of Laminar Mixed Convection in Tubes with Longitudinal Internal Fins
,”
ASME J. Heat Transfer
0022-1481,
110
(
2
), pp.
366
372
.
8.
Shome
,
B.
, and
Jensen
,
M. K.
, 1996, “
Experimental Investigation of Laminar Flow and Heat Transfer in Internally Finned Tubes
,”
J. Enhanced Heat Transfer
1065-5131,
4
(
1
), pp.
53
70
.
9.
Masliyah
,
J. M.
, and
Nandakumar
,
K.
, 1976, “
Heat Transfer in Internally Finned Tubes
,”
ASME J. Heat Transfer
0022-1481,
98
(
2
), pp.
257
261
.
10.
Patankar
,
S. V.
,
Ivanovic
,
M.
, and
Sparrow
,
E. M.
, 1979, “
Analysis of Turbulent Flow and Heat Transfer in Internally Finned Tubes and Annuli
,”
ASME J. Heat Transfer
0022-1481,
101
(
1
), pp.
29
37
.
11.
Rustum
,
I. M.
, and
Soliman
,
H. M.
, 1988, “
Numerical Analysis of Laminar Forced Convection in the Entrance Region of Tubes with Longitudinal Internally Fins
,”
ASME J. Heat Transfer
0022-1481,
110
(
2
), pp.
310
313
.
12.
Fabbri
,
G.
, 1998, “
Heat Transfer Optimization in Internally Finned Tubes Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
41
(
10
), pp.
1243
1253
.
13.
Hu
,
M. H.
, and
Chang
,
Y. P.
, 1973, “
Optimization of Finned Tubes for Heat Transfer in Laminar Flow
,”
ASME J. Heat Transfer
0022-1481,
95
(
3
), pp.
332
338
.
14.
Soliman
,
H. M.
, and
Feingold
,
A.
, 1977, “
Analysis of Fully Developed Laminar Flow in Longitudinal Internally Finned Tubes
,”
Chem. Eng. J.
0300-9467,
14
(
2
), pp.
119
128
.
15.
Soliman
,
H. M.
, 1981, “
The Effect of Fin Conductance on Laminar Heat Transfer Characteristics of Internally Finned Tubes
,”
Can. J. Chem. Eng.
0008-4034,
59
(
2
), pp.
251
256
.
16.
Koh
,
J. C. Y.
, and
Colony
,
R.
, 1986, “
Heat Transfer of Microstructures for Integrated Circuits
,”
Int. Commun. Heat Mass Transfer
0735-1933,
13
(
1
), pp.
89
98
.
17.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
(
3
), pp.
639
645
.
18.
Kim
,
S. J.
, and
Hyun
,
J. M.
, 2005, “
A Porous Medium Approach for the Thermal Analysis of Heat Transfer Devices
,”
Transport Phenomena in Porous Media III
,
D. B.
Ingham
and
I.
Pop
, eds.,
Elsevier
,
New York
, pp.
120
146
.
19.
Srinivasan
,
V.
,
Vafai
,
K.
, and
Christensen
,
R. N.
, 1994, “
Analysis of Heat Transfer and Fluid Flow Through a Spirally Fluted Tube Using a Porous Substrate Approach
,”
ASME J. Heat Transfer
0022-1481,
116
(
3
), pp.
543
551
.
20.
Kim
,
S. J.
,
Yoo
,
J. W.
, and
Jang
,
S. P.
, 2002, “
Thermal Optimization of a Circular-Sectored Finned Tube Using a Porous Medium Approach
,”
ASME J. Heat Transfer
0022-1481,
124
(
6
), pp.
1026
1033
.
21.
Bejan
,
A.
, 1995,
Convection Heat Transfer
,
2nd ed.
,
Wiley
,
New York
, Chap. 12.
22.
Min
,
J. Y.
, and
Kim
,
S. J.
, 2005, “
A Novel Methodology for Thermal Analysis of a Composite System Consisting of a Porous Medium and an Adjacent Fluid Layer
,”
ASME J. Heat Transfer
0022-1481,
127
(
6
), pp.
648
656
.
23.
Zill
,
D. G.
, and
Cullen
,
M. R.
, 1992,
Advanced Engineering Mathematics
,
PWS
,
Boston
, Chap. 11.
24.
Webb
,
R. L.
, and
Scott
,
M. J.
, 1980, “
A Parametric Analysis of the Performance of Internally Finned Tubes for Heat Exchanger Application
,”
ASME J. Heat Transfer
0022-1481,
102
, pp.
38
43
.
25.
Knight
,
R. W.
,
Goodling
,
J. S.
, and
Hall
,
D. J.
, 1991, “
Optimal Thermal Design of Forced Convection Heat Sinks—Analytical
,”
ASME J. Electron. Packag.
1043-7398,
113
, pp.
313
321
.
You do not currently have access to this content.