This research provides a detailed analysis of convective heat transfer in ceiling jets by using a quantitative salt-water modeling technique. The methodology of quantitative salt-water modeling builds on the analogy between salt-water flow and fire induced flow, which has been successfully used in the qualitative analysis of fires. Planar laser induced fluorescence and laser doppler velocimetry have been implemented to measure the dimensionless density difference and velocity in salt-water plumes. The quantitative salt-water modeling technique has been validated through comparisons of appropriately scaled salt-water measurements, fire measurements, and theory. This analogy has been exploited to develop an engineering heat transfer model for predicting heat transfer in impinging fire plumes using salt-water measurements along with the adiabatic wall modeling concept. Combining quantitative salt-water modeling and adiabatic wall modeling concepts introduces new opportunities for studying heat transfer issues in basic and complex fire induced flow configurations.

1.
Thomas
,
P. H.
,
Hinkley
,
P. L.
,
Theobald
,
C. R.
, and
Simms
,
D. L.
, 1963, “
Investigations Into the Flow of Hot Gases in Roof Venting
,” Fire Research Technical Paper No. 7.
2.
Tangren
,
E. N.
,
Sargent
,
W. S.
, and
Zukoski
,
E. E.
, 1978, “
Hydraulic and Numerical Modeling of Room Fires
,” California Institute of Technology, Pasadena, CA.
3.
Zukoski
,
E. E.
, 1978, “
Prediction of Smoke Movement in Buildings
,” California Institute of Technology, Pasadena, CA.
4.
Steckler
,
K. D.
,
Baum
,
H. R.
, and
Quintiere
,
J. G.
, 1986, “
Salt Water Modeling of Fire Induced Flows in Multi-Compartment Enclosures
,”
21st Symposium (International) on Combustion
,
The Combustion Institute
, pp.
143
149
.
5.
Kelly
,
A. A.
, 2001, “
Examination of Smoke Movement in a Two-Story Compartment Using Salt Water and Computational Fluid Dynamics Modeling
,” MS thesis, University of Maryland, College Park, MD.
6.
Sangras
,
R.
, and
Faeth
,
G. M.
, 1999, “
Buoyant Turbulent Jets and Plumes: III. Round Turbulent Nonbuoyant Starting Jets and Puffs and Buoyant Starting Plumes and Thermals
,” National Institute Standard and Technology Report No. GDL/GMF-99-03.
7.
Diez
,
F. J.
,
Bernal
,
L. P.
, and
Faeth
,
G. M.
, 2003, “
Round Turbulent Thermals, Putts, Starting Plumes and Starting Jets in Uniform Crossflow
,”
J. Heat Transfer
0022-1481,
125
, pp.
1046
1057
.
8.
Clement
,
J. M.
, and
Fleischmann
,
C. M.
, 2002, “
Experimental Verification of the Fire Dynamics Simulator Hydrodynamic Model
,”
Fire Safety Science: Proceedings of the 7th International Symposium
,
International Association for Fire Safety Science
, pp.
839
851
.
9.
Jankiewicz
,
S. P.
, 2004, “
Prediction Smoke Detector Response Using a Quantitative Salt-Water Modeling Technique
,” MS thesis, University of Maryland, College Park, MD.
10.
Yao
,
X.
,
Ma
,
T.
,
Marshall
,
A. W.
, and
Trouvé
,
A.
, 2004, “
Mixing and Turbulent Transport in Unconfined and Impinging Plumes
,”
10th International Fire Science and Engineering Conference: Interflam
,
Edinburgh, Scotland
, pp.
1233
1244
.
11.
Yao
,
X.
, and
Marshall
,
A. W.
, 2005, “
Characterizing of Ceiling Jet Dynamics With Salt-Water Modeling
,”
Fire Safety Science: Proceedings of the 8th International Symposium
,
International Association for Fire Safety Science
, pp.
927
938
.
12.
Yao
,
X.
, and
Marshall
,
A. W.
, 2006, “
Quantitative Salt-water Modeling of Fire Induced Flow
,”
Fire Saf. J.
0379-7112,
47
, pp.
497
508
.
13.
Alpert
,
R. L.
, 1971, “
Turbulent Ceiling-Jet Induced by Large-Scale Fires
,”
Combust. Sci. Technol.
0010-2202,
11
, pp.
197
213
.
14.
Motevalli
,
V.
, and
Marks
,
C.
, 1991, “
Characterizing the Unconfined Ceiling Jet Under Steady-State Conditions: A Reassessment
,”
Fire Safety Science: Proceedings of the Third International Symposium
,
International Association for Fire Safety Science
, pp.
301
312
.
15.
Veldman
,
C. C.
,
Kubota
,
T.
, and
Zukoski
,
E. E.
, 1975, “
An Experimental Investigation of the Heat Transfer From a Buoyant Gas Plume to a Horizontal Ceiling: Part 1. Unobstructed Ceiling
,” National Institute of Standards and Technology Report No. NBS-GCR-77-97.
16.
You
,
H. Z.
, and
Faeth
,
G. M.
, 1981, “
An Investigation of Fire Impingement on a Horizontal Ceiling
,” National Institute of Standards and Technology Report No. NBS-GCR-81-304.
17.
Cooper
,
L. Y.
, 1982, “
Heat Transfer From a Buoyant Plume to an Unconfined Ceiling
,”
J. Heat Transfer
0022-1481,
104
, pp.
446
451
.
18.
Cooper
,
L. Y.
, 1993, “
Fire-Plume-Generated Ceiling Jet Characteristics and Convective Heat Transfer to Ceiling and Wall Surfaces in a Two-Layer Fire Environment: Uniform Temperature Fire Environment: Uniform Temperature Ceiling and Walls
,”
Fire Science & Technology
,
13
, pp.
1
17
.
19.
Cooper
,
L. Y.
, and
Woodhouse
,
A.
, 1986, “
The Buoyant Plume-Driven Adiabatic Ceiling Temperature Revised
,”
J. Heat Transfer
0022-1481,
108
, pp.
822
826
.
20.
Poreh
,
M.
,
Tsuei
,
Y. G.
, and
Cermak
,
J. E.
, 1967, “
Investigation of a Turbulent Radial Wall Jet
,”
ASME J. Appl. Mech.
0021-8936,
34
, pp.
457
463
.
21.
Yao
,
X.
, 2006, “
Characterization of Fire Induced Flow Transport Along Ceilings Using Salt-Water Modeling
,” Ph.D. thesis, University of Maryland, College Park, MD.
22.
McCaffrey
,
B. J.
, 1979, “
Purely Buoyant Diffusion Flames: Some Experimental Results
,” Center for Fire Research, National Engineering Laboratory, National Bureau of Standards Report No. NBSIR 79-1910.
23.
Shabbir
,
A.
, and
George
,
W. K.
, 1994, “
Experiments on a Round Turbulent Buoyant Plume
,”
J. Fluid Mech.
0022-1120,
275
, pp.
1
32
.
24.
Pham
,
M. V.
,
Plourde
,
F.
, and
Kim
,
S. D.
, 2005, “
Three-Dimensional Characterization of a Pure Thermal Plume
,”
J. Heat Transfer
0022-1481,
127
, pp.
624
636
.
25.
Goldstein
,
R. J.
,
Sobolik
,
K. A.
, and
Seol
,
W. S.
, 1990, “
Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface
,”
ASME J. Heat Transfer
0022-1481,
112
, pp.
608
611
.
26.
Kruka
,
V.
, and
Eskinazi
,
S.
, 1964, “
The Wall-Jet in a Moving Stream
,”
J. Fluid Mech.
0022-1120,
20
, pp.
555
579
.
27.
Patel
,
R. P.
, 1962, “
Self Preserving Two-Dimensional Turbulent Jets and Wall Jets in a Moving Stream
,” MS thesis, McGill University, Quebec.
28.
Schwarz
,
W. H.
, and
Cosart
,
W. P.
, 1961, “
The Two-Dimensional Turbulent Wall-Jet
,”
J. Fluid Mech.
0022-1120,
10
, pp.
481
495
.
29.
Tailland
,
A.
, and
Mathieu
,
J.
, 1967, “
Jet Parietal
,”
J. Mec.
0021-7832,
6
, pp.
103
131
.
30.
Phares
,
D. J.
,
Smedley
,
G. T.
, and
Flagan
,
R. C.
, 2000, “
The Wall Shear Stress Produced by the Normal Impingement of a Jet on a Flat Surface
,”
J. Fluid Mech.
0022-1120,
418
, pp.
351
375
.
31.
Donaldson
,
C. D.
,
Sendeker
,
R. S.
, and
Margolis
,
D. P.
, 1971, “
A Study of Free Jet Impingement. Part 2. Free Jet Turbulent Structure and Impingement Heat Transfer
,”
J. Fluid Mech.
0022-1120,
45
, pp.
477
512
.
32.
Han
,
B.
, and
Goldstein
,
R. J.
, 2001, “
Jet-Impingement Heat Transfer in Gas Turbine Systems
,”
Ann. N.Y. Acad. Sci.
0077-8923,
934
, pp.
147
161
.
33.
Heskestad
,
G.
, 2002, “
Fire Plumes, Flame Heiht, and Air Entrainment
,” in
SFPE Handbook of Fire Protection Engineering
,
2nd ed.
,
DiNenno
,
P. J.
,
National Fire Protection Association
,
Quincy, MA
, pp.
2
10
.
34.
Hamins
,
A.
,
Konishi
,
P.
,
Borthwick
,
P.
, and
Kashiwagi
,
T.
, 1996, “
Global Properties of Gaseous Pool Fires
,”
26th Symposium (International) on Combustion
,
The Combustion Institute
,
Pittsburgh, PA
, pp.
1429
1436
.
35.
Heskestad
,
G.
, 1983, “
Virtual Origins of Fire Plumes
,”
Fire Saf. J.
0379-7112,
5
, pp.
109
114
.
You do not currently have access to this content.