Flow boiling oscillation characteristics in two silicon microchannel heat sink configurations are presented. One is a standard heat sink with 45 straight parallel channels, whereas the second is similar except with cross-linked paths at three locations. Data are presented over a flow range of 2050mlmin(91228kg(m2s)) using distilled water as the working fluid. The heat sinks have a footprint area of 3.5cm2 and contain 269μm wide by 283μm deep reactive ion etching channels. Flow oscillations are found to be similar in characteristic trends between the two configurations, showing a decreasing frequency with increasing heat flux. The oscillation amplitudes are relatively large and identical in frequency for the inlet temperature, outlet temperature, inlet pressure, and pressure drop. Oscillation properties for the standard heat sink at two different inlet temperatures and various flow rates are correlated for different heat fluxes. This work additionally presents a first glimpse of the cross-linked heat sink performance under flow boiling instability conditions.

1.
Jiang
,
L.
,
Mikkelsen
,
J.
,
Koo
,
J.
,
Huber
,
D.
,
Yao
,
S.
,
Zhang
,
L.
,
Zhou
,
P.
,
Maveety
,
J. G.
,
Prasher
,
R.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2002, “
Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
25
(
3
), pp.
347
355
.
2.
Paris
,
D. A.
,
Birur
,
C. G.
, and
Green
,
A. A.
, 2002, “
Development of MEMS Microchannel Heat Sinks for Micro/Nano Spacecraft Thermal Control
,”
Proceedings of the International Mechanical Engineering Congress and Exposition
(IMECE), Paper No. IMECE2002–34293, November 17–22, New Orleans, LA.
3.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
2
(
5
), pp.
126
129
.
4.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
Labianca
,
N.
,
Magerlein
,
J. H.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J.
, and
Schmidt
,
R.
, 2005, “
A Practical Implementation of Silicon Microchannel Coolers for High Power Chips
,”
21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, March 15–17, San Jose, CA,
IEEE
,
Piscataway, NJ
, pp.
1
7
.
5.
Kosar
,
A.
, and
Peles
,
Y.
, 2006, “
Thermal-Hydraulic Performance of MEMS-Based Pin Fin Heat Sink
,”
ASME J. Heat Transfer
0022-1481,
128
(
2
), pp.
121
131
.
6.
Peles
,
Y.
,
Kosar
,
A.
,
Mishra
,
C.
,
Kuo
,
C.
, and
Schneider
,
B.
, 2005, “
Forced Convective Heat Transfer Across a Pin Fin Micro Heat Sink
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
17
), pp.
3615
3627
.
7.
Chen
,
Y.
, and
Cheng
,
P.
, 2005, “
An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets
,”
Int. Commun. Heat Mass Transfer
0735-1933,
32
(
7
), pp.
931
938
.
8.
Alharbi
,
A.
,
Pence
,
D. V.
, and
Cullion
,
R.
, 2004, “
Thermal Characteristics of Microscale Fractal-Like Branching Channels
,”
ASME J. Heat Transfer
0022-1481,
126
(
5
), pp.
744
752
.
9.
Pence
,
D. V.
, 2002, “
Reduced Pumping Power and Wall Temperature in Microchannel Heat Sinks With Fractal-Like Branching Channel Networks
,”
Microscale Thermophys. Eng.
1089-3954,
6
(
4
), pp.
319
330
.
10.
Xu
,
J. L.
,
Gan
,
Y. H.
,
Zhang
,
D. C.
, and
Li
,
X. H.
, 2005, “
Microscale Heat Transfer Enhancement Using Thermal Boundary Layer Redeveloping Concept
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
9
), pp.
1662
1674
.
11.
Cho
,
E. S.
,
Koo
,
J.
,
Jiang
,
L.
,
Prasher
,
R. S.
,
Kim
,
M. S.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2003, “
Experimental Study on Two-Phase Heat Transfer in Microchannel Heat Sinks With Hotspots
,”
Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, March 11–13, San Jose, CA,
IEEE
,
Piscataway, NJ
, pp.
242
246
.
12.
Jiang
,
L.
,
Koo
,
J. M.
,
Wang
,
E.
,
Bari
,
A.
,
Cho
,
E. S.
,
Ong
,
W.
,
Prasher
,
R. S.
,
Maveety
,
J.
,
Kim
,
M. S.
,
Kenny
,
T. W.
,
Santiago
,
J. G.
, and
Goodson
,
K. E.
, 2002, “
Cross-Linked Microchannels for VLSI Hotspot Cooling
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition
, Paper No. IMECE2002-39238, November 17–22, New Orleans, LA, pp.
13
17
.
13.
Kosar
,
A.
,
Kuo
,
C.
, and
Peles
,
Y.
, 2006, “
Suppression of Boiling Flow Oscillations in Parallel Microchannels by Inlet Restrictors
,”
ASME J. Heat Transfer
0022-1481,
128
(
3
), pp.
251
260
.
14.
Kandlikar
,
S. G.
,
Kuan
,
W. K.
,
Willistein
,
D. A.
, and
Borelli
,
J.
, 2006, “
Stabilization of Flow Boiling in Microchannels Using Pressure Drop Elements and Fabricated Nucleation Sites
,”
ASME J. Heat Transfer
0022-1481,
128
(
4
), pp.
389
396
.
15.
Bergles
,
A. E.
, 1981, “
Instabilities in Two-Phase Systems
,”
Two-Phase Flow and Heat Transfer in the Power and Process Industries
,
Hemisphere
,
Washington, DC
, pp.
383
411
.
16.
Kakac
,
S.
, and
Veziroglu
,
T. N.
, 1982, “
A Review of Two-Phase Instabilities
,”
NATO Advanced Research Workshop on the Advances in Two-Phase Flow and Heat Transfer, Fundamentals and Applications
,
Martinus Nijhoff
,
The Hague, The Netherlands
, Vol.
II
, pp.
383
411
.
17.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
17–18
), pp.
3631
3641
.
18.
Xu
,
J.
,
Zhou
,
J.
, and
Gan
,
Y.
, 2005, “
Static and Dynamic Flow Instability of a Parallel Microchannel Heat Sink at High Heat Fluxes
,”
Energy Convers. Manage.
0196-8904,
46
(
2
), pp.
313
334
.
19.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2005, “
Explosive Boiling of Water in Parallel Micro-Channels
,”
Int. J. Multiphase Flow
0301-9322,
31
(
4
), pp.
371
392
.
20.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
, and
Segal
,
Z.
, 2006, “
Periodic Boiling in Parallel Micro-Channels at Low Vapor Quality
,”
Int. J. Multiphase Flow
0301-9322,
32
(
10–11
), pp.
1141
1159
.
21.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
ASME J. Heat Transfer
0022-1481,
126
(
4
), pp.
518
526
.
22.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
, 2005, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
20
27
.
23.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
10–11
), pp.
2045
2059
.
24.
Muwanga
,
R.
, and
Hassan
,
I.
, 2006, “
Local Heat Transfer Measurements in Microchannels Using Liquid Crystal Thermography: Methodology Development and Validation
,”
ASME J. Heat Transfer
0022-1481,
128
(
7
), pp.
617
626
.
25.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
, 2002,
Fundamentals of Fluid Mechanics
,
4th ed.
,
Wiley
,
New York
, pp.
480
489
.
26.
Kays
,
W. M.
, and
London
,
A. L.
, 1964,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
, pp.
32
33
.
27.
Kline
,
J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
28.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,”
Advances in Heat Transfer
,
Academic
,
New York
.
29.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
8–9
), pp.
1925
1935
.
30.
Chen
,
T.
, and
Garimella
,
S. V.
, 2006, “
Effects of Dissolved Air on Subcooled Flow Boiling of a Dielectric Coolant in a Microchannel Heat Sink
,”
J. Electron. Packag.
1043-7398,
128
(
4
), pp.
398
404
.
31.
Yadigaroglu
,
G.
, and
Bergles
,
A. E.
, 1972, “
Fundamental and Higher-Mode Density-Wave Oscillations in Two-Phase Flow
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
94
(
2
), pp.
189
195
.
You do not currently have access to this content.