Transient changes of fluid and wall temperatures in a two-phase heat exchanger are investigated in this article, particularly with respect to spatial and temporal effects of varying convection coefficients. The coupled energy equations for both sides of the heat exchanger are solved directly with an integral method. Varying convection coefficients are related to changes of vapor fraction between the inlet and outlet of the heat exchanger. Unlike past numerical studies encountering difficulties with instability, stiffness, and lack of convergence, the current integral formulation provides a reliable alternative and efficient procedure for transient response within the heat exchanger. Furthermore, complex inversion from a transformed domain is not needed, in contrast to conventional methods with Laplace transforms. In this article, past integral methods are extended to cases with varying convection coefficients, arising from changes of phase fraction on the two-phase side of the heat exchanger, as well a multiple step-changes of temperature. The predicted results show close agreement with past data, including numerical simulations with a dynamic simulator.

1.
Bowman
,
R. A.
,
Mueller
,
A. C.
, and
Nagle
,
W. M.
, 1940, “
Mean Temperature Difference in Design
,”
Trans. ASME
0097-6822,
62
, pp.
283
294
.
2.
Kays
,
W. M.
, and
London
,
A. L.
, 1984,
Compact Heat Exchangers
, 3rd ed.,
McGraw-Hill
, New York.
3.
Naterer
,
G. F.
, 2003,
Heat Transfer in Single and Multiphase Systems
,
CRC Press
, Boca Raton, FL.
4.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, New York.
5.
Kakac
,
S.
,
Shah
,
R. K.
, and
Bergles
,
A. E.
, 1983,
Low Reynolds Number Flow Heat Exchangers
,
Hemisphere
, New York.
6.
Na Ranong
,
C.
, and
Roetzel
,
W.
, 2002, “
Steady-State and Transient Behavior of Two Heat Exchangers Coupled by a Circulating Freestream
,”
Int. J. Therm. Sci.
1290-0729,
41
(
11
), pp.
1029
1043
.
7.
Srihari
,
N.
,
Rao
,
B. P.
,
Sunden
,
B.
, and
Das
,
S. K.
, 2005, “
Transient Response of Plate Heat Exchangers Considering Effect of Flow Maldistribution
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
15
), pp.
3231
3243
.
8.
Siakavellas
,
N. J.
, and
Georgiou
,
D. P.
, 2005, “
1D Heat Transfer Through a Flat Plate Submitted to Step Changes in Heat Transfer Coefficient
,”
Int. J. Therm. Sci.
1290-0729,
44
(
5
), pp.
452
464
.
9.
Yin
,
J.
, and
Jensen
,
M. K.
, 2003, “
Analytic Model for Transient Heat Exchanger Response
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
3255
3264
.
10.
Naterer
,
G. F.
,
Hendradjit
,
W.
,
Ahn
,
K. J.
, and
Venart
,
J. E. S.
, 1998, “
Near-Wall Microlayer Evaporation Analysis and Experimental Study of Nucleate Pool Boiling on Inclined Surfaces
,”
ASME J. Heat Transfer
0022-1481,
120
(
3
), pp.
641
653
.
11.
Naterer
,
G. F.
, 2001, “
Establishing Heat—Entropy Analogies for Interface Tracking in Phase Change Heat Transfer With Fluid Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
15
), pp.
2903
2916
.
12.
Jang
,
J. Y.
, and
Wang
,
M. T.
, 1987, “
Transient Response of Crossflow Heat Exchangers With One Fluid Mixed
,”
Int. J. Heat Fluid Flow
0142-727X,
8
(
3
), pp.
182
186
.
13.
Rao
,
N. M.
,
Maiti
,
B.
, and
Das
,
P. K.
, 2005, “
Comparison of Dynamic Performance for Direct and Fluid Coupled Indirect Heat Exchange Systems
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
15
), pp.
3244
3252
.
14.
Abdelghani-Idrissi
,
M. A.
,
Bagui
,
F.
, and
Estel
,
L.
, 2001, “
Analytical and Experimental Response Time to Flow Rate Step Change Along a Counter Flow Double Pipe
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
19
), pp.
3721
3730
.
15.
Gowda
,
Y. T.
,
Patnaik
,
B. S.
,
Narayana
,
P. A.
, and
Seetharamu
,
K. N.
, 1998, “
Finite Element Solution of Transient Laminar Flow and Heat Transfer Past an In-Line Tube Bank
,”
Int. J. Heat Fluid Flow
0142-727X,
19
(
1
), pp.
49
55
.
16.
Naterer
,
G. F.
, and
Camberos
,
J. A.
, 2003, “
Entropy and the Second Law in Fluid Flow and Heat Transfer Simulation
,”
J. Thermophys. Heat Transfer
0887-8722,
17
(
3
), pp.
360
371
.
17.
Naterer
,
G. F.
, 2005, “
Embedded Converging Surface Microchannels for Minimized Friction and Thermal Irreversibilities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
7
), pp.
1225
1235
.
18.
Adeyinka
,
O. B.
, and
Naterer
,
G. F.
, 2005, “
Experimental Uncertainty of Measured Entropy Production With Pulsed Laser PIV and Planar Laser Induced Fluorescence
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
8
), pp.
1450
1461
.
19.
Romie
,
F. E.
, 1984, “
Transient Response of the Counterflow Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
106
(
3
), pp.
620
626
.
20.
Romie
,
F. E.
, 1985, “
Transient Response of the Parallel-Flow Heat Exchanger
,”
Int. J. Heat Mass Transfer
0017-9310,
107
(
3
), pp.
727
730
.
21.
Roetzel
,
W.
, and
Xuan
,
Y.
, 1992, “
Transient Response of Parallel and Counterflow Heat Exchangers
,”
Int. J. Heat Mass Transfer
0017-9310,
114
(
2
), pp.
510
512
.
You do not currently have access to this content.