The use of open-cell metal foam in contemporary technologies is increasing rapidly. Certain simplifying assumptions for the combined conduction∕convection heat transfer analysis in metal foam have not been exploited. Solving the complete, and coupled, fluid flow and heat transfer governing equations numerically is time consuming. A simplified analytical model for the heat transfer in open-cell metal foam cooled by a low-conductivity fluid is presented. The model assumes local thermal equilibrium between the solid and fluid phases in the foam, and neglects the conduction in the fluid. The local thermal equilibrium assumption is supported by previous studies performed by other workers. The velocity profile in the foam is taken as non-Darcean slug flow. An approximate solution for the temperature profile in the foam is obtained using a similarity transform. The solution for the temperature profile is represented by the error function, which decays in what looks like an exponential fashion as the distance from the heat base increases. The model along with the simplifying assumptions were verified by direct experiment using air and several aluminum foam samples heated from below, for a range of Reynolds numbers and pore densities. The foam samples were either 5.08- or 20.32cm-thick in the flow direction. Reasonably good agreement was found between the analytical and the experimental results for a considerable range of Reynolds numbers, with the agreement being generally better for higher Reynolds numbers, and for foam with higher surface area density.

1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
, 2000,
Metal Foams, A Design Guide
,
Butterworth-Heinemann
,
Woburn, MA
, pp.
181
188
.
2.
Sullines
,
D.
, and
Daryabeige
,
K.
, 2001, “
Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam
,”
Proc. 35th AIAA Thermophysics Conference
,
Anaheim, CA
, January 11–14, AIAA Paper No. 2819, p.
12
.
3.
Vafai
,
K.
, and
Tien
,
C. L.
, 1982, “
Boundary and Inertia Effects on Convective Mass Transfer in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
25
(
8
), pp.
1183
1190
.
4.
Bhattacharya
,
A.
,
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2002, “
Thermophysical Properties of High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
1017
1031
.
5.
Bastawros
,
A. F.
, 1998, “
Effectiveness of Open-Cell Metallic Foams for High Power Electronic Cooling
,”
Proc. Symposium on the Thermal Management of Electronics, IMECE
,
Anaheim, CA
, November 15–20, ASME HTD Vol.
361-3
, pp.
211
217
.
6.
Alawadhi
,
E. M.
, and
Amon
,
C. H.
, 2003, “
PCM Thermal Control Unit for Portable Electronic Devices: Experimental and Numerical Studies
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
26
(
1
), pp.
116
125
.
7.
Vesligaj
,
M. J.
, and
Amon
,
C. H.
, 1999, “
Transient Thermal Management of Temperature Fluctuations During Time Varying Workloads on Portable Electronic
,”
IEEE Trans. Compon. Packag. Technol.
1521-3331,
22
(
4
), pp.
541
550
.
8.
Bastawros
,
A. F.
,
Evans
,
A. G.
, and
Stone
,
H. A.
, 1998, “
Evaluation of Cellular Metal Heat Transfer Media
,” MECH, 325, Harvard University, Cambridge, MA.
9.
Hunt
,
M. L.
, and
Tien
,
C. L.
, 1988, “
Effect of Thermal Dispersion on Forced Convection in Fibrous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
31
(
2
), pp.
301
309
.
10.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2001, “
On the Effective Thermal Conductivity of Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
827
836
.
11.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
12.
Hwang
,
J. J.
,
Hwang
,
G. J.
,
Yeh
,
R. H.
, and
Chao
,
C. H.
, 2002, “
Measurement of the Interstitial Convection Heat Transfer and Frictional Drag for Flow Across Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
120
129
.
13.
Lu
,
T. J.
,
Stone
,
A.
, and
Ashby
,
M. F.
, 1998, “
Heat Transfer in Open-Cell Metal Foam
,”
Acta Mater.
1359-6454,
46
(
10
), pp.
3619
3635
.
14.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
15.
Angirasa
,
D.
, 2002, “
Forced Convective Heat Transfer in Metallic Fibrous Materials
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
739
745
.
16.
Poulikakos
,
D.
, and
Renken
,
K.
, 1987, “
Forced Convection in a Channel Filled With Porous Medium, Including the Effect of Flow Inertia, Variable Porosity, and Brinkman Friction
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
880
888
.
17.
Poulikakos
,
D.
, and
Kazmierczak
,
M.
, 1987, “
Forced Convection in a Duct Partially Filled With a Porous Material
,”
ASME J. Heat Transfer
0022-1481,
109
, pp.
653
662
.
18.
Kim
,
S. J.
, and
Jang
,
S. P.
, 2002, “
Effects of the Darcy Number, the Prandtl Number and the Reynolds Number on the Local Thermal Non-Equilibrium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3885
3896
.
19.
Vafai
,
K.
, and
Kim
,
S. J.
, 1989, “
Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
1103
1106
.
20.
Kaviany
,
M.
, 1995,
Principles of Heat Transfer in Porous Media
,
2nd ed.
,
Springer
,
New York
, pp.
17
,
18
,
30
,
70
,
415
.
21.
Narasimhan
,
A.
,
Lage
,
J.
, and
Nield
,
D. A.
, 2001, “
New Theory for Forced Convection Through Porous Media by Fluids With Temperature-Dependent Viscosity
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
1045
1051
.
22.
Ingham
,
D. B.
, and
Pop
,
I.
, 1998,
Transport Phenomena in Porous Media
,
Elsevier Science
,
Oxford, UK
, p.
103
.
23.
Minkowycz
,
W. J.
, and
Haji-Sheikh
,
A.
, 2006, “
Heat Transfer in Parallel Plates and Circular Porous Passages With Axial Conduction
,”
Int. J. Heat Mass Transfer
(in press).
24.
Krishnan
,
S.
,
Murthy
,
J. Y.
, and
Garimella
,
S. V.
, 2004, “
A Two-Temperature Model for the Analysis of Passive Thermal Control System
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
628
637
.
25.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
(
6
), pp.
939
954
.
26.
Hwang
,
G. J.
, and
Chao
,
C. H.
, 1994, “
Heat Transfer Measurement and Analysis for Sintered Porous Channels
,”
ASME J. Heat Transfer
0022-1481,
116
, pp.
456
464
.
27.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effects of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
28.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Non-Equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
29.
Kim
,
S. J.
, and
Kim
,
D.
, 1999, “
Forced Convection in Microstructures for Electronic Equipment Cooling
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
639
645
.
30.
Kim
,
S. J.
, and
Kim
,
D.
, 2001, “
The Thermal Interaction at the Interface Between a Porous Medium and an Impermeable Wall
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
527
533
.
31.
Quintard
,
M.
,
Kaviany
,
M.
, and
Whitaker
,
S.
, 1997, “
Two-Medium Treatment of Heat Transfer in Porous Media: Numerical Results for Effectvive Properties
,”
Adv. Water Resour.
0309-1708,
20
(
2–3
), pp.
77
94
.
32.
Deleglise
,
M.
,
Simacek
,
P.
,
Binetruy
,
C.
, and
Advani
,
S.
, 2003, “
Determination of the Thermal Dispersion Coefficient During Radial Filling of a Porous Medium
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
875
880
.
33.
Nield
,
D. A.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
,
2nd ed.
,
Springer
,
New York
, p.
25
.
34.
Younis
,
L. B.
, and
Viskanta
,
R.
, 1993, “
Experimental Determiniation of the Volumetric Heat Transfer Coefficient Between Stream of Air and Ceramic Foam
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
6
), pp.
1425
1434
.
35.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 1999, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3373
3385
.
36.
Boomsma
,
K.
, and
Poulikakos
,
D.
, 2002, “
The Effect of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foam
,”
ASME J. Fluids Eng.
0098-2202,
124
, pp.
263
271
.
37.
Dukhan
,
N.
, and
Alvarez
,
A.
, 2004, “
Pressure Drop Measurements for Air Flow Through Open-Cell Aluminum Foam
,”
Proc. ASME International Engineering Congress
,
Anaheim, CA
, November 13–19, Paper No. IMECE2004-60428.
38.
Boomsma
,
K.
,
Poulikakos
,
D.
, and
Ventikos
,
Y.
, 2003, “
Simulations of Flow Through Open Cell Metal Foams Using an Idealized Periodic Cell Structure
,”
Int. J. Heat Fluid Flow
0142-727X,
24
, pp.
825
834
.
39.
Seguin
,
D.
,
Montillet
,
A.
, and
Comiti
,
J.
, 1998, “
Experimental Characterization of Flow Regimes in Various Porous Media-I: Limit of Laminar Flow Regime
,”
Chem. Eng. Sci.
0009-2509,
53
(
21
), pp.
3751
3761
.
40.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 1999, “
The Effective Thermal Conductivity of High Porosity Fibrous Metal Foam
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
466
471
.
41.
Zhao
,
C. Y.
,
Lu
,
T. J.
, and
Jackson
,
J. D.
, 2004, “
The Temperature Dependence of Effective Thermal Conductivity of Open-Cell Steel Alloy Foams
,”
Mater. Sci. Eng., A
0921-5093,
367
, pp.
123
131
.
42.
Zumbrunnen
,
R.
,
Viskanta
,
R.
, and
Incropera
,
F. P.
, 1986, “
Heat Transfer Through Porous Solids With Complex Internal Geometries
,”
Int. J. Heat Mass Transfer
0017-9310,
29
(
2
), pp.
275
284
.
43.
ERG Materials and Aerospace, 2003, www.ergaerospace.comwww.ergaerospace.com, Oakland, CA.
44.
Figliola
,
R.
, and
Beasly
,
D.
, 2000,
Theory and Design for Mechanical Measurements
,
3rd ed.
,
Wiley
,
New York
, pp.
124
,
310
.
You do not currently have access to this content.