Convective heat transfer in a rectangular duct containing a heated rod forming a narrow gap with a plane wall has been simulated by solving the unsteady Reynolds-averaged Navier-Stokes equations with a Reynolds stress model. Of particular interest is the role of quasi-periodic coherent structures in transporting fluid and heat across the gap region. It is shown that the local instantaneous velocity and temperature vary widely because of large-scale transport by coherent vortical structures forming in pairs on either side of the rod.

1.
Rowe
,
D. S.
,
Johnson
,
B. M.
, and
Knudsen
,
J. G.
, 1974, “
Implications Concerning Rod Bundle Crossflow Mixing Based on Measurements of Turbulent Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
17
, pp.
407
419
.
2.
Hooper
,
J. D.
, and
Rehme
,
K.
, 1984, “
Large-Scale Structural Effects in Developed Turbulent Flow through Closely-Spaced Rod Arrays
,”
J. Fluid Mech.
0022-1120,
145
, pp.
305
337
.
3.
Möller
,
S. V.
, 1992, “
Single-Phase Turbulent Mixing in Rod Bundles
,”
Exp. Therm. Fluid Sci.
0894-1777,
5
, pp.
26
33
.
4.
Wu
,
X.
, 1995, “
On the Transport Mechanisms in Simulated Heterogeneous Rod Bundle Subchannels
,”
Nucl. Eng. Des.
0029-5493,
158
, pp.
125
134
.
5.
Krauss
,
T.
, and
Meyer
,
L.
, 1996, “
Characteristics of Turbulent Velocity and Temperature in a Wall Channel of a Heated Rod Bundle
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
, pp.
75
86
.
6.
Krauss
,
T.
, and
Meyer
,
L.
, 1998, “
Experimental Investigation of Turbulent Transport of Momentum and Energy in a Heated Rod Bundle
,”
Nucl. Eng. Des.
0029-5493,
180
, pp.
185
206
.
7.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
, 2000, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical Rod – Part 1: Reynolds-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777,
23
, pp.
59
73
.
8.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
, 2000, “
The Structure of Turbulent Flow in a Rectangular Channel Containing a Cylindrical Rod – Part 2: Phase-Averaged Measurements
,”
Exp. Therm. Fluid Sci.
0894-1777,
23
, pp.
75
91
.
9.
Guellouz
,
M. S.
, and
Tavoularis
,
S.
, 1992, “
Heat Transfer in Rod Bundle Subchannels With Varying Rod-Wall Proximity
,”
Nucl. Eng. Des.
0029-5493,
132
, pp.
351
366
.
10.
Groeneveld
,
D. C.
, 1973, “
Forced Convective Heat Transfer to Superheated Steam in Rod Bundles
,” Report No. AECL-4450,
Atomic Energy of Canada Ltd.
, Chalk River, Ontario, Canada.
11.
Wu
,
X.
, 1994, “
Numerical Study on the Turbulence Structures in Closely Spaced Rod Bundle Subchannels
,”
Numer. Heat Transfer, Part A
1040-7782,
25
, pp.
649
670
.
12.
Chang
,
D.
, and
Tavoularis
,
S.
, 2005, “
Unsteady Numerical Simulations of Turbulence and Coherent Structures in Axial Flow Near a Narrow Gap
,”
ASME J. Fluids Eng.
0098-2202,
127
, pp.
458
466
.
13.
Launder
,
B. E.
, and
Shima
,
N.
, 1989, “
Second-Moment Closure for the Near-Wall Sublayer: Development and Application
,”
AIAA J.
0001-1452,
27
(
10
), pp.
1319
1325
.
14.
Yakhot
,
V.
, and
Orszag
,
S. A.
, 1986, “
Renormalization Group Analysis of Turbulence: I. Basic Theory
,”
J. Sci. Comput.
0885-7474,
1
, pp.
3
51
.
15.
Chen
,
H. C.
, and
Patel
,
V. C.
, 1988, “
Near-Wall Turbulence Models for Complex Flows Including Separation
,”
AIAA J.
0001-1452,
26
(
6
), pp.
641
648
.
16.
Barth
,
T. J.
, and
Jespersen
,
D. C.
, 1989, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. 89-0366,
AIAA 27th Aerospace Sciences Meeting
, Reno, Nevada.
17.
Van Doormal
,
J. P.
, and
Raithby
,
G. D.
, 1984, “
Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows
,”
Numer. Heat Transfer
0149-5720,
7
, pp.
147
163
.
18.
Gresho
,
P. M.
,
Lee
,
R. L.
, and
Sani
,
R. L.
, 1980, “
On the Time-Dependent Solution of the Incompressible Navier-Stokes Equations in Two and Three Dimensions
,”
Recent Advances in Numerical Methods in Fluids
,
C.
Taylor
and
K.
Morgan
, eds.,
Pineridge
, Swansea, UK, Chap. 2.
19.
Murthy
,
J. Y.
, and
Mathur
,
S.
, 1997, “
Periodic Flow and Heat Transfer Using Unstructured Meshes
,”
Int. J. Numer. Methods Fluids
0271-2091,
25
, pp.
659
677
.
20.
Burmeister
,
L. C.
, 1983,
Convective Heat Transfer
,
Wiley
, New York, Chap. 12.
21.
Schröder
,
K.
, and
Gelbe
,
H.
, 1999, “
Two- and Three-Dimensional CFD-Simulation of Flow-Induced Vibration Excitation in Tube Bundles
,”
Chem. Eng. Process.
0255-2701,
38
, pp.
621
629
.
22.
Iaccarino
,
G.
, and
Durbin
,
P.
, 2000, “
Unsteady 3D RANS Simulations Using the v2-f Model
,”
Annual Research Briefs 2000
,
Center for Turbulence Research
, Stanford University, Stanford, CA, pp.
263
269
.
23.
Guellouz
,
M. S.
, 1998, “
Turbulent Flow and Heat Transfer in Rod Bundles
,” Ph.D. thesis, Department of Mechanical Engineering, University of Ottawa, Ottawa, Ontario, Canada.
24.
Hussain
,
A. K. M. F.
, 1983, “
Coherent Structures – Reality and Myth
,”
Phys. Fluids
0031-9171,
26
, pp.
2816
2850
.
25.
Wilcox
,
D. C.
, 2000,
Turbulence Modeling for CFD
,
DCW Industries
, La Canada, CA.
26.
Bonnet
,
J. P.
, and
Delville
,
J.
, 2001, “
Review of Coherent Structures in Turbulent Free Shear Flows and Their Possible Influence on Computational Methods
,”
Flow, Turbul. Combust.
1386-6184,
66
, pp.
333
353
.
27.
Spalart
,
P. R.
, 2000, “
Strategies for Turbulence Modeling and Simulation
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
252
263
.
28.
Chen
,
C. J.
, and
Jaw
,
S. Y.
, 1998,
Fundamentals of Turbulence Modeling
,
Taylor and Francis
, Washington, DC, Chap. 6.
29.
Wu
,
X.
, and
Trupp
,
A. C.
, 1994, “
Spectral Measurements and Mixing Correlation in Simulated Rod Bundle Subchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
1277
1281
.
30.
Baratto
,
F.
,
Bailey
,
S. C. C.
, and
Tavoularis
,
S.
, 2006, “
Measurements of Frequencies and Spatial Correlations of Coherent Structures in Rod Bundle Flows
,”
Nucl. Eng. Des.
0029-5493 (in press).
You do not currently have access to this content.