Abstract

Intense electron-phonon scattering near the peak electric field in a semiconductor device results in nanometer-scale phonon hotspots. Past studies have argued that ballistic phonon transport near such hotspots serves to restrict heat conduction. We reexamine this assertion by developing a new phonon transport model. In a departure from previous studies, we treat isotropic dispersion in all phonon branches and include a phonon emission spectrum from independent Monte Carlo simulations of electron-phonon scattering. We cast the model in terms of a non-equilibrium phonon distribution function and compare predictions from this model with data for ballistic transport in silicon. The solution to the steady-state transport equations for bulk silicon transistors shows that energy stagnation at the hotspot results in an excess equivalent temperature rise of about 13% in a 90nm gate-length device. Longitudinal optical phonons with non-zero group velocities dominate transport. We find that the resistance associated with ballistic transport does not overwhelm that from the package unless the peak power density approaches 50Wμm3. A transient calculation shows negligible phonon accumulation and retardation between successive logic states. This work highlights and reduces the knowledge gaps in the electro-thermal simulation of transistors.

1.
Lai
,
J.
, and
Majumdar
,
A.
, 1996, “
Concurrent Thermal and Electrical Modeling of Sub-Micrometer Silicon Devices
,”
J. Appl. Phys.
0021-8979,
79
, pp.
7353
7363
.
2.
Sverdrup
,
P. G.
,
Ju
,
Y. S.
, and
Goodson
,
K. E.
, 2001, “
Sub-Continuum Simulations of Heat Conduction in Silicon-on-Insulator Transistors
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
130
137
.
3.
Narumanchi
,
S. V. J.
,
Murthy
,
J. Y.
, and
Amon
,
C. H.
, 2004, “
Submicron Heat Transport Model in Silicon Accounting for Phonon Dispersion and Polarization
,”
ASME J. Heat Transfer
0022-1481,
126
, pp.
946
955
.
4.
Yang
,
R.
,
Chen
,
G.
,
Laroche
,
M.
, and
Taur
,
Y.
, 2005, “
Simulation of Nanoscale Multidimensional Transient Heat Conduction Problems Using Ballistic-Diffusive Equations and Phonon Boltzmann Equation
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
298
306
.
5.
Sinha
,
S.
, and
Goodson
,
K. E.
, 2002, “
Phonon Heat Conduction From Nanoscale Hot Spots in Semiconductors
,”
12th International Heat Transfer Conference
,
Grenoble
, France.
6.
Mahan
,
G. D.
, and
Claro
,
F.
, 1988, “
Nonlocal Theory of Thermal Conductivity
,”
Phys. Rev. B
0163-1829,
38
, pp.
1963
1969
.
7.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
539
545
.
8.
Yeo
,
Y. C.
,
Subramanian
,
V.
,
Kedzierski
,
J.
,
Xuan
,
P.
,
King
,
T.-J.
,
Bokor
,
J.
, and
Hu
,
C.
, 2000, “
Nanoscale Ultra-Thin-Body Silicon-on-Insulator P-MOSFET With a SiGe∕Si Heterostructure Channel
,”
IEEE Electron Device Lett.
0741-3106,
21
, pp.
161
163
.
9.
Klemens
,
P. G.
, 1951, “
The Thermal Conductivity of Dielectric Solids at Low Temperatures—Theoretical
,”
Proc. R. Soc. London, Ser. A
1364-5021,
208
, pp.
108
133
.
10.
Claro
,
F.
, and
Mahan
,
G. D.
, 1989, “
Transient Heat Transport in Solids
,”
J. Appl. Phys.
0021-8979,
66
, pp.
4213
4217
.
11.
Ferry
,
D. K.
, 2000,
Semiconductor Transport
,
Taylor and Francis
, New York.
12.
Menèndez
,
J.
, and
Cardona
,
M.
, 1984, “
Temperature Dependence of the First-Order Raman Scattering by Phonons in Si, Ge, and alpha-Sn: Anharmonic effects
,”
Phys. Rev. B
0163-1829,
29
, pp.
2051
2059
.
13.
Holland
,
M. G.
, 1963, “
Analysis of Lattice Thermal Conductivity
,”
Phys. Rev.
0031-899X,
132
, pp.
2461
2471
.
14.
Sverdrup
,
P. G.
,
Sinha
,
S.
,
Asheghi
,
M.
,
Srinivasan
,
U.
, and
Goodson
,
K. E.
, 2001, “
Measurement of Ballistic Phonon Conduction Near Hot Spots in Silicon
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
3331
3333
.
15.
Hahne
,
E.
, and
Grigull
,
U.
, 1975, “
Shape Factor and Shape Resistance for Steady Multidimensional Heat Conduction
,”
Int. J. Heat Mass Transfer
0017-9310,
18
, pp.
751
767
.
16.
Chen
,
G.
, 2001, “
Ballistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
, pp.
2297
2300
.
17.
Goodson
,
K. E.
, and
Flik
,
M. I.
, 1992, “
Effect of Microscale Thermal Conduction on the Packing Limit of Silicon-on-Insulator Electronic Devices
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
715
722
.
18.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2004, “
Analytic Band Monte Carlo Model for Electron Transport in Silicon Including Acoustic and Optical Phonon Dispersion
,”
J. Appl. Phys.
0021-8979,
96
, pp.
4998
5005
.
19.
Pop
,
E.
,
Dutton
,
R. W.
, and
Goodson
,
K. E.
, 2005, “
Monte Carlo Simulations of Joule Heating in Bulk and Strained Silicon
,”
Appl. Phys. Lett.
0003-6951,
86
, p.
082101
.
20.
Dingle
,
R. B.
, 1950, “
The Electrical Conductivity of Thin Wires
,”
Proc. R. Soc. London, Ser. A
1364-5021,
201
, pp.
545
560
.
21.
Groeseneken
,
G.
,
Colinge
,
J. P.
,
Maes
,
H. E.
,
Alderman
,
J. C.
, and
Holt
,
S.
, 1990, “
Temperature Dependence of Threshold Voltage in Thin-Film SOI MOSFETs
,”
IEEE Electron Device Lett.
0741-3106,
11
, pp.
329
331
.
22.
Sinha
,
S.
,
Schelling
,
P. K.
,
Phillpot
,
S.
, and
Goodson
,
K. E.
, 2005, “
Scattering of g-Process LO Phonons at Hotspots in Silicon
,”
J. Appl. Phys.
0021-8979,
97
, pp.
023702
.
23.
Dolling
,
G.
, 1963, “
Lattice Vibrations in Crystals With the Diamond Structure
,”
Symposium on Inelastic Scattering of Neutrons in Solids and Liquids
,
Chalk River
, Canada, pp.
37
48
.
You do not currently have access to this content.