Microchannel heat transfer governs the performance of the microchannel heat sink, which is a recent technology aimed at managing the stringent thermal requirements of today’s high-end electronics. The microencapsulated form of liquid crystals has been well established for use in surface temperature mapping, while limited studies are available on the use of the un-encapsulated form. This latter form is advantageous since it offers the potential for high spatial resolution, which is necessary for microgeometries. A technique for using un-encapsulated thermochromic liquid crystals (TLCs) in order to measure the local heat transfer coefficient in microchannel geometries is shown in the present study. Measurements were made in a closed loop facility combined with a microscopic imaging system and automated data acquisition. A localized TLC calibration was used to account for a non-uniform coating and variation of lighting conditions. Three test section configurations were investigated with each subsequent configuration arising due to a shortfall in the previous. Two of these configurations are comprised of single wall heated rectangular channels, while the third is a circular tube channel. Validation results are also presented; overall, the methods developed and utilized in this study have been shown to provide the local heat transfer coefficient in microchannels.

1.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks-I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2755
2771
.
2.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
, 1981, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
0741-3106,
EDL-2
(
5
), pp.
126
129
.
3.
Zohar
,
Y.
, 1998, “
Microchannel Heat Sinks
” in
M.
Gad-el-Hak.
,
The MEMS Handbook
,
McGraw–Hill
,
New York
, pp.
32
-1–32-
30
.
4.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
, 2000, “
Fluid Flow and Heat Transfer A Micro- and Meso-Scales With Application to Heat Exchanger Design
,” ASME
Appl. Mech. Rev.
0003-6900,
53
(
7
), pp.
175
194
.
5.
Bailey
,
D. K.
,
Ameel
,
T. A.
,
Warrington
,
R. O.
, and
Savoie
,
T. I.
, 1995, “
Single Phase Forced Convection Heat Transfer in Microgeometries—A Review
,”
Proceedings of the Intersociety Energy Conversion Engineering Conference
,
2
, pp.
301
310
.
6.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2000, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
, pp.
80
92
.
7.
Hassan
,
I.
,
Phutthavong
,
P.
, and
Abdelgawad
,
M.
, 2004, “
Microchannel Heat Sinks: An Overview of the State-of-the-Art
,”
Microscale Thermophys. Eng.
1089-3954,
8
, pp.
183
205
.
8.
Thome
,
J. R.
, 2004, “
Boiling in Microchannels: A Review of Experiment and Theory
,”
Int. J. Heat Fluid Flow
0142-727X,
25
, pp.
128
139
.
9.
Goldstein
,
R. J.
,
Chen
,
P. H.
, and
Chiang
,
H. D.
, 1998, “
Measurement of Temperature and Heat Transfer
.” in
W. M.
Rosenhow
,
J. P.
Hartnett
, and
Y. I.
Cho
,
Handbook of Heat Transfer
, 3rd ed.,
McGraw–Hill
,
New York
, pp.
16.1
16.77
.
10.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
, 2002, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3275
3286
.
11.
Ireland
,
P. T.
, and
Jones
,
T. V.
, 2000, “
Liquid Crystal Measurements of Heat Transfer and Surface Shear Stress
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
969
986
.
12.
Hallcrest Product Information, 2000, DS-001–DS-010.
13.
Fergason
,
J. L.
, 1968, “
Liquid Crystals in Nondestructive Testing
,”
Appl. Opt.
0003-6935,
7
(
9
), pp.
1729
1737
.
14.
Höhmann
,
C.
, and
Stephan
,
P.
, 2002, “
Microscale Temperature Measurement at an Evaporating Liquid Meniscus
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
157
162
.
15.
Kenning
,
D. B. R.
,
Konno
,
T.
, and
Wienecke
,
M.
, 2001, “
Investigation of Boiling Heat Transfer by Liquid Crystal Thermography
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
219
229
.
16.
Klausner
,
J. F.
,
Mei
,
R.
, and
Chen
,
W. C.
, 1995, “
Liquid Crystal Thermography in Boiling Heat Transfer
,”
Proc. SPIE
0277-786X,
2546
, pp.
152
159
.
17.
Chin
,
Y.
, 1997, “
An Experimental Study on Flow Boiling in a Narrow Channel: From Convective to Nucleate Boiling
,” Ph.D. dissertation, University of Houston.
18.
Chin
,
Y.
,
Lakshminarasimhan
,
M. S.
,
Lu
,
Q.
,
Hollingsworth
,
D. K.
, and
Witte
,
L. C.
, 2002, “
Convective Heat Transfer in Vertical Asymmetrically Heated Narrow Channels
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
1019
1025
.
19.
Aligoodarz
,
M. R.
,
Yan
,
Y.
, and
Kenning
,
D. B. R.
, 1998, “
Wall Temperature and Pressure Variations During Flow Boiling in Narrow Channels
,”
Heat Transfer 1998, Proceedings of the 11th International Heat Transfer Conference
,
2
, pp.
225
230
.
20.
Azar
,
K.
,
Benson
,
J. R.
, and
Manno
,
V. P.
, 1991, “
Liquid Crystal Imaging for Temperature Measurement of Electronic Devices
,” in
Proceedings—IEEE Semiconductor Thermal and Temperature Measurement Symposium
, pp.
23
33
.
21.
Piasecka
,
M.
, and
Poniewski
,
M. E.
, 2004, “
Influence of Selected Parameters on Boiling Heat Transfer in Minichannels
,”
Proceedings of the Second International Conference on Microchannels and Minichannels (ICMM2004)
, pp.
515
521
.
22.
Lelea
,
D.
,
Nishio
,
S.
, and
Takano
,
K.
, 2004, “
The Experimental Research on Microtube Heat Transfer and Fluid Flow of Distilled Water
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2817
2830
.
23.
Owhaib
,
W.
, and
Palm
,
B.
, 2004, “
Experimental Investigation of Single-Phase Convective Heat Transfer in Circular Microchannnels
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
105
110
.
24.
Hapke
,
I.
,
Boye
,
H.
, and
Schmidt
,
J.
, 2000, “
Onset of Nucleate Boiling in Minichannels
,”
Int. J. Therm. Sci.
1290-0729,
39
, pp.
505
513
.
25.
Fujisawa
,
N.
,
Aoyama
,
A.
, and
Kosaka
,
S.
, 2003, “
Measurement of Shear-Stress Distribution Over a Surface by Liquid-Crystal Coating
,”
Meas. Sci. Technol.
0957-0233,
14
, pp.
1655
1661
.
26.
Reda
,
D. C.
,
Muratore
,
J. J.
, and
Heineck
,
J. T.
, 1994, “
Time and Flow-Direction Responses of Shear-Stress-Liquid Crystal Coatings
,”
AIAA J.
0001-1452,
32
, pp.
693
699
.
27.
Hay
,
H. L.
, and
Hollingsworth
,
D. K.
, 1996, “
A Comparison of Trichromic Systems for Use in the Calibration of Polymer-Dispersed Thermochromic Liquid Crystals
,”
Exp. Therm. Fluid Sci.
0894-1777,
12
(
1
), pp.
1
12
.
28.
Anderson
,
M.
, 1999, “
Thermochromic Liquid Crystal Thermography: Hysterisis, Illumination and Imaging System Effects, Image Processing and Applications
,” PhD Dissertation, University of California Davis, Mechanical and Aeronautical Engineering Department.
29.
Chan
,
T. L.
,
Ashforth-Frost
,
S.
, and
Jambunathan
,
K.
, 2001, “
Calibrating for Viewing Angle Effect During Heat Transfer Measurements on a Curved Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2209
2223
.
30.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
, 3rd ed.,
McGraw–Hill
,
New York
.
31.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,” in
Advances in Heat Transfer
,
Academic
,
New York
.
32.
Gnielinski
,
V.
, 1976, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
0020-6318,
16
, pp.
359
368
.
33.
Ebadian
,
M. A.
, and
Dong
,
Z. F.
, 1998, “
Forced Convection Internal Flow in Ducts
,” in
W. M.
Rosenhow
,
J. P.
Hartnett
, and
Y. I.
Cho
,
Handbook of Heat Transfer
, 3rd ed.,
McGraw–Hill
,
New York
.
34.
Holman
,
J. P.
, 2002,
Heat Transfer
, 9th ed.,
McGraw–Hill
,
New York
.
You do not currently have access to this content.