Here we show through an order-of-magnitude analysis that the enhancement in the effective thermal conductivity of nanofluids is due mainly to the localized convection caused by the Brownian movement of the nanoparticles. We also introduce a convective-conductive model which accurately captures the effects of particle size, choice of base liquid, thermal interfacial resistance between the particles and liquid, temperature, etc. This model is a combination of the Maxwell-Garnett (MG) conduction model and the convection caused by the Brownian movement of the nanoparticles, and reduces to the MG model for large particle sizes. The model is in good agreement with data on water, ethylene glycol, and oil-based nanofluids, and shows that the lighter the nanoparticles, the greater the convection effect in the liquid, regardless of the thermal conductivity of the nanoparticles.

1.
Phelan
,
P. E.
,
Bhattacharya
,
P.
, and
Prasher
,
R. S.
, 2005, “
Nanofluids for Heat Transfer Applications
,”
V.
Prasad
,
Y.
Jaluria
, and
G.
Chen
, eds.,
Annu. Rev. Heat Transfer
1049-0787,
14
, pp.
255
275
.
2.
Lee
,
S.
,
Choi
,
S. U. S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
3.
Xie
,
H.
,
Wang
,
J.
,
Xi
,
T.
,
Liu
,
Y.
,
Ai
,
F.
, and
Wu
,
Q.
, 2002, “
Thermal Conductivity Enhancement of Suspensions Containing Nanosized Alumina Particles
,”
J. Appl. Phys.
0021-8979,
91
(
7
), pp.
4568
4572
.
4.
Masuda
,
H.
,
Ebata
,
A.
,
Teramae
,
K.
, and
Hishinuma
,
N.
, 1993, “
Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-fine Particles (Dispersion of γ-Al2O3, SiO2, and TiO2 Ultra-fine Particles
,”
Netsu Bussei
0913-946X,
4
, pp.
227
233
.
5.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
6.
Xuan
,
Y.
, and
Le
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Fluid Flow
0142-727X,
21
, pp.
58
64
.
7.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
,
Thompson
,
L. J.
, and
Lee
,
S.
, 1997, “
Enhanced Thermal Conductivity Through the Development of Nanofluids
,”
S.
Komarneni
,
J. C.
Parker
, and
H. J.
Wollenberger
, eds.,
Nanophase and Nanocomposite Materials II MRS
, MRS Symp. Proc., Pittsburgh, PA, pp.
3
11
.
8.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
,”
Appl. Phys. Lett.
0003-6951,
78
(
6
), pp.
718
720
.
9.
Nan
,
C-W.
,
Birringer
,
R.
,
Clarke
,
D. R.
, and
Gleiter
,
H.
, 1997, “
Effective Thermal Conductivity of Particulate Composites With Interfacial Thermal Resistance
,”
J. Appl. Phys.
0021-8979,
81
, pp.
6692
6699
.
10.
Yu
,
W.
, and
Choi
,
S. U. S.
, 2003, “
The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model
,”
J. Nanopart. Res.
1388-0764,
5
, pp.
167
171
.
11.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
12.
Wilson
,
O. M.
,
Hu
,
X.
,
Cahill
,
D. G.
, and
Braun
,
P. V.
, 2002, “
Colloidal Metal Particles as Probes of Nanoscale Thermal Transport In Fluids
,”
Phys. Rev. B
0163-1829,
66
, pp.
224301
-1–224301-
5
.
13.
Huxtable
,
S.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
, pp.
731
734
.
14.
Xue
,
Q-Z
, 2003, “
Model for Effective Thermal Conductivity of Nanofluids
,”
Phys. Lett. A
0375-9601,
307
, pp.
313
317
.
15.
Wang
,
B-X.
,
Zhou
,
L-P.
, and
Peng
,
X-F.
, 2003, “
A Fractal Model for Predicting the Effective Thermal Conductivity of Liquid With Suspension of Nanoparticles
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
2665
2672
.
16.
Jang
,
S. P.
, and
Choi
,
S. U. S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
17.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
A New Thermal Conductivity Model for Nanofluids
,”
J. Nanopart. Res.
1388-0764, to appear.
18.
Bhattacharya
,
P.
,
Saha
,
S. K.
,
Yadav
,
A.
,
Phelan
,
P. E.
, and
Prasher
,
R. S.
, 2004, “
Brownian Dynamics Simulation to Determine the Effective Thermal Conductivity of Nanofluids
,”
J. Appl. Phys.
0021-8979,
95
(
11
), pp.
6492
6494
.
19.
Prasher
,
R. S.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
(
2
), p.
025901
.
20.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Kumar
,
V. R. R.
,
Sundarajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
(
14
), p.
144301
.
21.
Eastman
,
J. A.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Keblinski
,
P.
, 2004, “
Thermal Transport in Nanofluids
,”
Annu. Rev. Mater. Res.
1531-7331,
34
, pp.
219
246
.
22.
Chen
,
S. H.
, 2000, “
Thermophoretic Motion of a Spher Parallel to an Insulated Plane
,”
J. Colloid Interface Sci.
0021-9797,
224
, pp.
63
75
.
23.
Koo
,
J.
, 2004, “
Computational Nanofluid Flow and Heat Transfer Analysis as Applied to Micro-Systems
,” Ph.D. thesis, North Carolina State University, Raleigh, NC.
24.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2003, “
Two Regimes of Thermal Resistance at Liquid-Sold Interface
,”
J. Chem. Phys.
0021-9606,
118
, pp.
337
339
.
25.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
0034-6861,
61
, pp.
605
668
.
26.
CRC Handbook of Chemistry and Physics
, 2003–2004,
84th ed.
,
CRC Press
,
Boca Raton
, FL.
27.
Kays
,
W. M.
, and
Crawford
,
M. E.
, 1993,
Convective Heat and Mass Transfer
,
McGraw-Hill International Editions
, New Delhi.
28.
Incropera
,
F. P.
, and
Dewitt
,
D. P.
, 1996,
Fundamentals of Heat and Mass Transfer
,
4th ed.
,
John Wiley and Sons
, New York.
29.
Mcquarrie
,
D. A.
,
Statistical Mechanics
, 2003,
1st Indian ed.
,
Viva Books Pvt. Ltd.
, New Delhi.
30.
Acrivos
,
A.
, and
Taylor
,
T. D.
, 1962, “
Heat and Mass Transfer from Single Spheres in Stokes Flow
,”
Phys. Fluids
0031-9171,
5
, pp.
387
394
.
31.
Lamb
,
H.
,
Hydrodynamics
, 1945,
Dover Publication
, New York.
32.
Brodkey
,
R. S.
,
Kim
,
D. S.
, and
Sidner
,
W.
, 1991, “
Fluid to Particle Heat Transfer in a Fluidized Bed and to Single Particles
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
2327
2337
.
33.
Kunii
,
D.
, and
Levenspiel
,
O.
, 1991,
Fluidization Engineering
,
Butterworths
, Boston.
34.
Holman
,
J. P.
,
Moore
,
T. W.
, and
Wong
,
V. M.
, 1965, “
Particle-to-Fluid Heat Transfer in Water-Fluidized Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
4
, pp.
21
31
.
35.
Russel
,
W. B.
,
Saville
,
D. A.
, and
Schowalter
,
W. R.
, 1989,
Colloidal Dispersions
,
Cambridge University Press
, New York.
36.
Sobhan
,
C. B.
, and
Garimella
,
S. V.
, 2001, “
A Comparative Analysis of Studies on Heat Transfer and Fluid Flow in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
5
, pp.
293
311
.
37.
Colgan
,
E. G.
,
Furman
,
B.
,
Gaynes
,
M.
,
Graham
,
W.
,
LaBianca
,
N.
,
Polastre
,
R. J.
,
Rothwell
,
M. B.
,
Bezama
,
R. J.
,
Choudhary
,
R.
,
Marston
,
K.
,
Toy
,
H.
,
Wakil
,
J.
,
Zitz
,
J.
, and
Schimdt
,
R.
, 2005, “
A Practical Implementation of Silicon Microchannel Coolers For High Power Chips
,”
21st IEEE SEMI-THERM Symposium
, March 15–17, San Jose, CA.
38.
Chang
,
J-Y.
,
Prasher
,
R.
,
Chau
,
D.
,
Myers
,
A.
,
Dirner
,
J.
,
Prstic
,
S.
, and
He
,
D.
, 2005, “
Convective Performance of Package Based Single Phase Microchannel Heat Exchanger
,”
Proc. of InterPack 2005, San Francisco, CA
, ASME, July 17–22.
You do not currently have access to this content.