Abstract
An experimental test program is described for the measurement of natural convection for an isothermal, heated sphere centrally located in an isothermal, cooled spherical enclosure. A transient test method is used in a reduced pressure environment to provide data for a wide range of Rayleigh number, from the limiting case of laminar boundary layer convection to the diffusive limit. Tests are performed using a fixed outer diameter for four different inner sphere diameters, resulting in diameter ratios in the range . The data are in excellent agreement with the exact solution for the conductive limit and are shown to be bounded by a model for the isolated, isothermal sphere.
Issue Section:
Natural and Mixed
Convection
1.
Bishop
, E. H.
, Mack
, L. R.
, and Scanlan
, J. A.
, 1966, “Heat Transfer by Natural Convection Between Concentric Spheres
,” Int. J. Heat Mass Transfer
0017-9310, 9
(7
), pp. 649
–662
.2.
Scanlan
, J. A.
, Bishop
, E. H.
, and Powe
, R. E.
, 1970, “Natural Convection Heat Transfer Between Concentric Spheres
,” Int. J. Heat Mass Transfer
0017-9310, 13
(12
), pp. 1857
–1872
.3.
Weber
, N.
, Powe
, R. E.
, Bishop
, E. H.
, and Scanlan
, J. A.
, 1973, “Heat Transfer by Natural Convection Between Vertically Eccentric Spheres
,” ASME Trans. J. Heat Transfer
0022-1481, 95
(1
), pp. 47
–52
.4.
Powe
, R. E.
, Warrington
, R. O.
, and Scanlan
, J. A.
, 1980, “Natural Convective Flow Between a Body and its Spherical Enclosure
,” Int. J. Heat Mass Transfer
0017-9310, 23
(10
), pp. 1337
–1350
.5.
Mack
, L. R.
, and Hardee
, H. C.
, 1968, “Natural Convection between Concentric Spheres at Low Rayleigh Numbers
,” Int. J. Heat Mass Transfer
0017-9310, 11
(3
), pp. 387
–396
.6.
Astill
, K. N.
, Leong
, H.
, and Martorana
, R.
, 1980, “A Numerical Solution for Natural Convection in Concentric Spherical Annuli
,” Natural Convection in Enclosures
, ASME-HTD Vol. 8
, K. E.
Torrance
and I.
Catton
, eds ASME
, New York, pp. 105
–113
.7.
Caltagirone
, J.-P.
, Combarnous
, M.
, and Mojtabi
, A.
, 1980, “Natural Convection between Two Concentric Spheres: Transition toward a Multicellular Flow
,” Numer. Heat Transfer
0149-5720, 3
(1
), pp. 107
–114
.8.
Singh
, S. H.
, and Chen
, J.
, 1980, “Numerical Solution for Free Convection between Concentric Spheres at Moderate Grashof Numbers
,” Numer. Heat Transfer
0149-5720, 3
(4
), pp. 441
–459
.9.
Ingham
, D. B.
, 1981, “Heat Transfer by Natural Convection between Spheres and Cylinders
,” Numer. Heat Transfer
0149-5720, 4
(1
), pp. 53
–67
.10.
Wright
, J. L.
, and Douglass
, R. W.
, 1986, “Natural Convection in Narrow-gap, Spherical Annuli
,” Int. J. Heat Mass Transfer
0017-9310, 29
(5
), pp. 725
–739
.11.
Fujii
, M.
, Takamatsu
, H.
, and Fujii
, T.
, 1987, “A Numerical Analysis of Free Convection around an Isothermal Sphere (Effects of Space and Prandtl Number)
,” Proceedings of the 1987 ASME/JSME Thermal Engineering Joint Conference
, P. J.
Marto
and I.
Tanasawa
, eds., JSME
, Tokyo, Vol. 4
, pp. 55
–60
.12.
Garg
, V. K.
, 1992, “Natural Convection between Concentric Spheres
,” Int. J. Heat Mass Transfer
0017-9310, 35
(8
), pp. 1935
–1945
.13.
Chu
, H-S.
, and Lee
, T-S.
, 1993, “Transient Natural Convection Heat Transfer between Concentric Spheres
,” Int. J. Heat Mass Transfer
0017-9310, 36
(13
), pp. 3159
–3170
.14.
Chiu
, C. P.
, and Chen
, W. R.
, 1996, “Transient Natural Convection Heat Transfer between Concentric and Vertically Eccentric Spheres
,” Int. J. Heat Mass Transfer
0017-9310, 39
(7
), pp. 1439
–1452
.15.
Saunders
, O. A.
, 1936, “The Effect of Pressure on Natural Convection in Air
,” Proc. R. Soc. London, Ser. A
0950-1207, 157
, pp. 278
–291
.16.
Hollands
, K. G. T.
, 1988, “Direct Measurement of Gaseous Natural Convection Heat Fluxes
,” Proc. First World Conf. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics
, R. K.
Shah
, E. N.
Ganic
, and K. T.
Yang
, eds., Sept. 4–9, Dubrovnik, Yugoslavia
, Elsevier
, New York
, pp. 160
–168
.17.
Yovanovich
, M. M.
, 1998, “Conduction and Thermal Contact Resistances (Conductances)
,” Handbook of Heat Transfer
, 3rd. ed., W. M.
Rohsenow
, J. P.
Harnett
, and Y.
Cho
, eds., McGraw Hill
, New York, Chap. 3, pp. 3.1
–3.73
.18.
Kennard
, E. H.
, 1938, Kinetic Theory of Gases
, McGraw Hill
, New York.19.
Incropera
, F. P.
, and DeWitt
, D. P.
, 1996, Fundamentals of Heat and Mass Transfer
, 4th ed., Wiley
, New York, pp. 96
–99
, 114–118.20.
Raithby
, G. D.
, and Hollands
, K. G. T.
, 1998, “Natural Convection
,” Handbook of Heat Transfer
, 4th ed., W. M.
Rohsenow
, J. P.
Hartnett
, and Y.
Cho
, eds., McGraw Hill
, NY, Chap. 4.21.
Sparrow
, E. M.
, 1976, “Error Estimates in Temperature Measurement
,” Measurements in Heat Transfer
, 2nd ed. E. R. G.
Eckert
and R. J.
Goldstein
, eds., Hemisphere
, Washington, pp. 3
–6
.22.
Moffat
, R. J.
, 1988, “Describing the Uncertainties in Experimental Results
,” Exp. Therm. Fluid Sci.
0894-1777, 1
, pp. 3
–17
.23.
Lee
, S.
, Yovanovich
, M. M.
, and Jafarpur
, K.
, 1991, “Effects of Geometry and Orientation on Laminar Natural Convection Heat Transfer from Isothermal Bodies
,” J. Thermophys. Heat Transfer
0887-8722, 5
, pp. 208
–216
.Copyright © 2006
by American Society of Mechanical Engineers
You do not currently have access to this content.