In some radiative transfer processes, the time scales are usually on the order of 109-1015s, so the transient effect of radiation should be considered. In present research, a finite element model, which is based on the discrete ordinates method and least-squares variational principle, is developed to simulate the transient radiative transfer in absorbing and scattering media. The numerical formulations and detailed steps are given. Moreover, two transient radiative transfer problems are investigated and the results are compared with those by integral method and finite volume method. It indicates that the present model can simulate the transient radiative transfer effectively and accurately.

1.
Tan
,
Z. M.
, and
Hsu
,
P. F.
, 2001, “
An Integral Formulation of Transient Radiative Transfer
,”
ASME J. Heat Transfer
0022-1481,
123
, pp.
466
475
.
2.
Balsara
,
D. W.
, 1999, “
An Analysis of the Hyperbolic Nature of the Equations of Radiation Hydrodynamics
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
61
(
5
), pp.
617
627
.
3.
Guo
,
Z.
, and
Kumar
,
S.
, 2000, “
Discrete-Ordinates Solution of Short-Pulsed Laser Transport in Two-Dimensional Turbid Media
,”
Appl. Opt.
0003-6935,
39
(
24
), pp.
4411
4417
.
4.
Sakami
,
M.
,
Mitra
,
K.
, and
Vo-Dinh
,
T.
, 2002, “
Analysis of Short-Pulse Laser Photon Transport Through Tissues for Optical Tomography
,”
Opt. Lett.
0146-9592,
27
(
5
), pp.
336
338
.
5.
Chai
,
J. C.
, 2003, “
One-Dimensional Transient Radiation Heat Transfer Modeling Using a Finite-Volume Method
,”
Nat. Biotechnol.
1087-0156,
44
, pp.
187
208
.
6.
Chai
,
J. C.
, 2004, “
Transient Radiative Transfer in Irregular Two-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
, pp.
281
294
.
7.
Wu
,
C. Y.
, 2000, “
Propagation of Scattered Radiation in a Participating Planar Medium With Pulse Irradiation
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
64
, pp.
537
548
.
8.
Hsu
,
P. F.
, 2001, “
Effects of Multiple Scattering and Reflective Boundary on the Transient Radiative Transfer Process
,”
Int. J. Therm. Sci.
1290-0729,
40
, pp.
539
549
.
9.
Burns
,
S. P.
,
Howell
,
J. R.
, and
Klein
,
D. R.
, 1995, “
Finite Element Solution for Radiative Heat Transfer With Nongray, Nonhomogeneous Radiative Properties
,”
ASME National Heat Transfer Conference
, Vol.
13
, pp.
3
10
.
10.
Furmanski
,
P.
, and
Bannaszek
,
J.
, 2004, “
Finite Element Analysis of Concurrent Radiation and Conduction in Participating Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
84
, pp.
563
573
.
11.
Liu
,
L. H.
, 2004, “
Finite Element Simulation of Radiative Heat Transfer in Absorbing and Scattering Media
,”
J. Thermophys. Heat Transfer
0887-8722,
18
(
4
), pp.
555
557
.
12.
An
,
W.
,
Ruan
,
L. M.
,
Qi
,
H.
, and
Liu
,
L. H.
, 2005, “
Finite Element Method for Radiative Heat Transfer in Absorbing and Anisotropic Scattering Media
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
(
3–4
), pp.
409
422
.
13.
Pontaza
,
J. P.
, and
Reddy
,
J. N.
, 2005, “
Least-Squares Finite Element Formulations for One-Dimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
95
(
3
), pp.
387
406
.
14.
Cui
,
X.
, and
Li
,
B. Q.
, 2005, “
Discontinuous Finite Element Solution of 2D Radiative Transfer With and Without Axisymmetry
,”
J. Quant. Spectrosc. Radiat. Transf.
0022-4073,
96
(
3–4
), pp.
383
407
.
15.
Hughes
,
T. J. R.
, and
Brooks
,
A.
, 1982, “
Streamline Upwind/Petrov-Galerkin Formulation for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
32
, pp.
199
259
.
16.
Donea
,
J.
, 1984, “
A Taylor-Galerkin Method for Convective Transport Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
20
, pp.
101
119
.
17.
Jiang
,
B. N.
, and
Povinelli
,
L. A.
, 1990, “
Least-Squares Finite Element Method for Fluid Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
81
, pp.
13
37
.
18.
Donea
,
J.
, and
Quartapelle
,
L.
, 1992, “
An Introduction to Finite Element Methods for Transient Advection Problems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
95
, pp.
169
203
.
19.
Raithby
,
G. D.
, 1999, “
Discussion of the Finite Volume Method for Radiation and its Application Using 3D Unstructured Meshes
,”
Numer. Heat Transfer, Part B
1040-7790,
35
, pp.
389
405
.
You do not currently have access to this content.