The heat conduction mechanism in nanofluid suspensions is derived for transient processes attempting to explain experimental results, which reveal an impressive heat transfer enhancement. In particular, the effect of the surface-area-to-volume ratio (specific area) of the suspended nanoparticles on the heat transfer mechanism is explicitly accounted for, and reveals its contribution to the specific solution and results. The present analysis might provide an explanation that settles an apparent conflict between the recent experimental results in nanofluid suspensions and classical theories for estimating the effective thermal conductivity of suspensions that go back more than one century (Maxwell, J.C., 1891, Treatise on Electricity and Magnetism). Nevertheless, other possible explanations have to be accounted for and investigated in more detail prior to reaching a final conclusion on the former explanation.

1.
Eastman
,
J. A.
,
Choi
,
S. U. S.
,
Li
,
S.
,
Yu
,
W.
, and
Thompson
,
L. J.
, 2001, “
Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles
Appl. Phys. Lett.
0003-6951,
78
, pp.
718
720
.
2.
Lee
,
S.
,
Choi
,
S. U.-S.
,
Li
,
S.
, and
Eastman
,
J. A.
, 1999, “
Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
121
, pp.
280
289
.
3.
Choi
,
S. U. S.
,
Zhang
,
Z. G.
,
Yu
,
W.
,
Lockwood
,
F. E.
, and
Grulke
,
E. A.
, 2001, “
Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions
,”
Appl. Phys. Lett.
0003-6951,
79
, pp.
2252
2254
.
4.
Xuan
,
Y.
, and
Li
,
Q.
, 2000, “
Heat Transfer Enhancement of Nanofluids
,”
Int. J. Heat Mass Transfer
0017-9310,
21
, pp.
58
64
.
5.
Maxwell
,
J. C.
, 1891,
A Treatise on Electricity and Magnetism
, 3rd ed.,
Clarendon Press
, 1954 reprint,
Dover
,
New York
, pp.
435
441
.
6.
Batchelor
,
G. K.
, 1972, “
Sedimentation in a Dilute Dispersion Of Spheres
,”
J. Fluid Mech.
0022-1120,
52
, pp.
45
268
.
7.
Batchelor
,
G. K.
, and
Green
,
J. T.
, 1972, “
The Hydrodynamic Interaction of Two Small Freely-Moving Spheres in a Linear Flow Field
,”
J. Fluid Mech.
0022-1120,
56
, pp.
375
400
.
8.
Hamilton
,
R. L.
, and
Crosser
,
O. K.
, 1962, “
Thermal Conductivity of Heterogeneous Two-Component Systems
,”
Ind. Eng. Chem. Fundam.
0196-4313,
1
, pp.
187
191
.
9.
Jeffrey
,
D. J.
, 1973, “
Conduction Through a Random Suspension of Spheres
,”
Proc. R. Soc. London, Ser. A
1364-5021,
335
, pp.
355
367
.
10.
Davis
,
R. H.
, 1986, “
The Effective Thermal Conductivity of a Composite Material With Spherical Inclusions
,”
Int. J. Thermophys.
0195-928X,
7
, pp.
609
620
.
11.
Lu
,
S.
, and
Lin
,
H.
, 1996, “
Effective Conductivity of Composites Containing Aligned Spheroidal Inclusions of Finite Conductivity
,”
J. Appl. Phys.
0021-8979,
79
, pp.
6761
6769
.
12.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
, 1990, “
A Method for Determining the Effective Conductivity of Dispersions of Particles
,”
Proc. R. Soc. London, Ser. A
1364-5021,
430
, pp.
285
313
.
13.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
, 1991, “
The Effective Conductivity of Random Suspensions of Spherical Particles
,”
Proc. R. Soc. London, Ser. A
1364-5021,
432
, pp.
445
465
.
14.
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U. S.
, and
Eastman
,
J. A.
, 2002, “
Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids)
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
855
863
.
15.
Xue
,
L.
,
Keblinski
,
P.
,
Phillpot
,
S. R.
,
Choi
,
S. U.-S.
, and
Eastman
,
J. A.
, 2004, “
Effect of Fluid Layering at the Liquid-Solid Interface on Thermal Transport
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4277
4284
.
16.
Prasher
,
R.
,
Bhattacharya
,
P.
, and
Phelan
,
P. E.
, 2005, “
Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids)
,”
Phys. Rev. Lett.
0031-9007,
94
, p.
025901
.
17.
Das
,
S. K.
,
Putra
,
N.
,
Thiesen
,
P.
, and
Roetzel
,
W.
, 2003, “
Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
125
, pp.
567
574
.
18.
Kumar
,
D. H.
,
Patel
,
H. E.
,
Rajeev Kumar
,
V. R.
,
Sundararajan
,
T.
,
Pradeep
,
T.
, and
Das
,
S. K.
, 2004, “
Model for Heat Conduction in Nanofluids
,”
Phys. Rev. Lett.
0031-9007,
93
, p.
144301
.
19.
Jang
,
S. P.
, and
Choi
,
S. U.-S.
, 2004, “
Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids
,”
Appl. Phys. Lett.
0003-6951,
84
(
21
), pp.
4316
4318
.
20.
Chen
,
G.
, 1996, “
Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles
,”
ASME J. Heat Transfer
0022-1481,
118
, pp.
539
545
.
21.
Chen
,
G.
, 2000, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanopart. Res.
1388-0764,
2
, pp.
199
204
.
22.
Chen
,
G.
, 2001, “
Balistic-Diffusive Heat-Conduction Equations
,”
Phys. Rev. Lett.
0031-9007,
86
(
11
), pp.
2297
2300
.
23.
Nield
,
D.
, and
Bejan
,
A.
, 1999,
Convection in Porous Media
, 2nd ed.,
Springer
,
New York
.
24.
Vadasz
,
J. J.
,
Govender
,
S.
, and
Vadasz
,
P.
, 2005, “
Heat Transfer Enhancement in Nanofluids Suspensions: Possible Mechanisms and Explanations
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
2673
2683
.
25.
Hammerschmidt
,
U.
, and
Sabuga
,
W.
, 2000, “
Transient Hot Wire (THW) Method: Uncertainty Assessment
,”
Int. J. Thermophys.
0195-928X,
21
, pp.
1255
1278
.
26.
De Groot
,
J. J.
,
Kestin
,
J.
, and
Sookiazian
,
H.
, 1974, “
Instrument to Measure the Thermal Conductivity of Gases
,”
Physica (Utrecht)
0031-8914,
75
, pp.
454
482
.
27.
Healy
,
J. J.
,
de Groot
,
J. J.
, and
Kestin
,
J.
, 1976, “
The Theory of the Transient Hot-Wire Method for Measuring Thermal Conductivity
,”
Physica
,
82C
, pp.
392
408
.
28.
Kestin
,
J.
, and
Wakeham
,
W. A.
, 1978, “
A Contribution to the Theory of the Transient Hot-Wire Technique for Thermal Conductivity Measurements
,”
Physica A
0378-4371,
92
, pp.
102
116
.
29.
Assael
,
M. J.
,
Dix
,
M.
,
Gialou
,
K.
,
Vozar
,
L.
, and
Wakeham
,
W. A.
, 2002, “
Application of the Transient Hot-Wire Technique to the Measurement of the Thermal Conductivity of Solids
,”
Int. J. Thermophys.
0195-928X,
23
,
615
633
.
30.
Nagasaka
,
Y.
, and
Nagashima
,
A.
, 1981, “
Absolute Measurement of the Thermal Conductivity of Electrically Conducting Liquids by the Transient Hot-Wire Method
,”
J. Phys. E
0022-3735,
14
, pp.
1435
1440
.
31.
Assael
,
M. J.
,
Chen
,
C.-F.
,
Metaxa
,
I.
, and
Wakeham
,
W. A.
, 2004, “
Thermal Conductivity of Suspensions of Carbon Nanotubes in Water
,”
Int. J. Thermophys.
0195-928X,
25
,
971
985
.
32.
Tzou
,
D. Y.
, 1997,
Macro-to-Microscale Heat Transfer The Lagging Behavior
,
Taylor and Francis
,
Washington, D.C.
33.
Tzou
,
D. Y.
, 2001, “
Temperature-Dependent Thermal Lagging in Ultrafast Laser Heating
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1725
1734
.
34.
Vadasz
,
P.
, 2005, “
Explicit Conditions for Local Thermal Equilibrium in Porous Media Conduction
,”
Transp. Porous Media
0169-3913,
59
, pp.
341
355
.
35.
Vadasz
,
P.
, 2005, “
Absence of Oscillations and Resonance in Porous Media Dual-Phase-Lagging Fourier Heat Conduction
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
307
314
.
36.
Vadasz
,
P.
, 2005, “
Lack of Oscillations in Dual-Phase-Lagging Heat Conduction for a Porous Slab Subject to Imposed Heat Flux and Temperature
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
14
), pp.
2822
2828
.
37.
Özisik
,
M. N.
, 1993,
Heat Conduction
, 2nd ed.,
Wiley
,
New York
.
38.
Quintard
,
M.
, and
Whitaker
,
S.
, 1995, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison With Numerical Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2779
2796
.
39.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media Under Local Thermal Nonequilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
40.
Amiri
,
A.
, and
Vafai
,
K.
, 1994, “
Analysis of Dispersion Effects and Non-Thermal Equilibrium, Non-Darcian, Variable Porosity Incompressible Flow Through Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
934
954
.
41.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
, 1979, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
0009-2509,
34
, pp.
325
336
.
42.
Wakao
,
N.
, and
Kaguei
,
S.
, 1982, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients in Packed Beds
,”
Heat and Mass Transfer in Packed Beds
,
Gordon and Breach
,
New York
.
43.
Kuwahara
,
F.
,
Shirota
,
M.
, and
Nakayama
,
A.
, 2001, “
A Numerical Study of Interfacial Convective Heat Transfer Coefficient in Two-Energy Equation Model for Convection in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1153
1159
.
44.
Nield
,
D. A.
, 1998, “
Effects of Local Thermal Nonequilibrium in Steady Convective Processes in a Saturated Porous Medium: Forced Convection in a Channel
,”
J. Porous Media
1091-028X,
1
, pp.
181
186
.
45.
Huxtable
,
S. T.
,
Cahill
,
D. G.
,
Shenogin
,
S.
,
Xue
,
L.
,
Ozisik
,
R.
,
Barone
,
P.
,
Usrey
,
M.
,
Strano
,
M. S.
,
Siddons
,
G.
,
Shim
,
M.
, and
Keblinski
,
P.
, 2003, “
Interfacial Heat Flow in Carbon Nanotube Suspensions
,”
Nat. Mater.
1476-1122,
2
, pp.
731
734
.
You do not currently have access to this content.