The flow boiling process suffers from severe instabilities induced due to nucleation of vapor bubbles in a superheated liquid environment in a minichannel or a microchannel. In an effort to improve the flow boiling stability, several modifications are introduced and experiments are performed on 1054×197μm parallel rectangular microchannels (hydraulic diameter of 332μm) with water as the working fluid. The cavity sizes and local liquid and wall conditions required at the onset of nucleation are analyzed. The effects of an inlet pressure restrictor and fabricated nucleation sites are evaluated as a means of stabilizing the flow boiling process and avoiding the backflow phenomenon. The results are compared with the unrestricted flow configurations in smooth channels.

1.
Kandlikar
,
S. G.
,
Steinke
,
M. E.
,
Tian
,
S.
, and
Campbell
,
L. A.
, 2001, “
High Speed Photographic Observation of Flow Boiling of Water in Parallel Minichannels
,” paper presented at the
ASME National Heat Transfer Conference
, Los Angeles, CA, June
10
12
.
2.
Kandlikar
,
S. G.
, and
Balasubramanian
,
P.
, 2005, “
An Experimental Study on the Effect of Gravitational Orientation on Flow Boiling of Water in 1054×197μm Parallel Minichannels
,”
ASME J. Heat Transfer
0022-1481,
127
, pp.
820
829
.
3.
Hetsroni
,
G.
,
Klein
,
D.
,
Mosyak
,
A.
,
Segal
,
Z.
, and
Pogrebnyak
,
E.
, 2003, “
Convective Boiling in Parallel Microchannels
,”
First International Conference on Microchannels and Minichannels
,
ASME, Rochester
, NY, April 24–25, pp.
59
67
.
4.
Peles
,
Y.
, 2003, “
Two-Phase Flow in Microchannels–Instabilities Issues and Flow Regime Mapping
,”
First International Conference on Microchannels and Minichannels
,
ASME, Rochester
, NY, April 24–25, pp.
559
566
.
5.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
, 2003, “
Evolution of Microchannel Flow Passages-–Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
0145-7632,
24
(
1
), pp.
3
17
.
6.
Cho
,
E. S.
,
Koo
,
J.
,
Jiang
,
L.
,
Prasher
,
R. S.
,
Kim
,
M. S.
,
Santiago
,
J. G.
,
Kenny
,
T. W.
, and
Goodson
,
K. E.
, 2003, “
Experimental Study on Two-Phase Heat Transfer in Microchannel Heat Sinks With Hotspots
,” paper presented at the
19th IEEE SEMI-THERM Symposium
.
7.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
(
2–4
), pp.
389
407
.
8.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2005, “
On the Nature of Critical Heat Flux in Microchannels
,”
J. Heat Transfer
0022-1481,
127
(
1
), pp.
101
107
.
9.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in MicroChannel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
, pp.
358
365
.
10.
Bowers
,
M. B.
, and
Mudawar
,
I.
, 1994, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
321
332
.
11.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
2045
2059
.
12.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
J. Heat Transfer
0022-1481,
126
, pp.
8
16
.
13.
Hsu
,
Y. Y.
, and
Graham
,
R. W.
, 1961, “
An Analytical and Experimental Study of the Thermal Boundary Layer and Ebullition Cycle in Nucleate Boiling
,” NASA TN-D-594.
14.
Hsu
,
Y. Y.
, 1962, “
On the Size Range of Active Nucleation Cavities on a Heating Surface
,”
J. Heat Transfer
0022-1481,
84
, pp.
207
216
.
15.
Bergles
,
A. E.
, and
Rohsenow
,
W. M.
, 1964, “
The Determination of Forced-Convection Surface Boiling Heat Transfer
,”
J. Heat Transfer
0022-1481,
86
, pp.
365
372
.
16.
Sato
,
T.
, and
Matsumura
,
H.
, 1964, “
On the Conditions of Incipient Subcooled Boiling With Forced Convection
,”
Bull. JSME
0021-3764,
7
(
26
), pp.
392
398
.
17.
Davis
,
E. J.
, and
Anderson
,
G. H.
, 1966, “
The Incipience of Nucleate Boiling in Forced Convection Flow
,”
AIChE J.
0001-1541,
12
(
4
), pp.
774
780
.
18.
Kandlikar
,
S. G.
,
Mizo
,
V. R.
,
Cartwright
,
M. D.
, and
Ikenze
,
E.
, 1997, “
Bubble Nucleation and Growth Characteristics in Subcooled Flow Boiling of Water
,” HTD-Vol.
342
,
ASME Proceedings of the 32nd National Heat Transfer Conference
, Vol.
4
, pp.
11
18
.
19.
Mukherjee
,
A.
, and
Kandlikar
,
S. G.
, 2004, “
Numerical Study of an Evaporating Meniscus on a Moving Heated Surface
,”
ASME Heat Transfer/Fluids Engineering Summer Conference
,
Charlotte, NC
, July 11–15.
20.
Steinke
,
M. S.
, and
Kandlikar
,
S. G.
, 2004, “
Control and Effect of Dissolved Air in Water During Flow Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
(
8–9
), pp.
1925
1935
.
21.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
J. Heat Transfer
0022-1481,
126
(
4
), pp.
518
526
.
22.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
, 2005, “
An Experimental Study of Flow Patterns, Pressure Drop and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
20
27
.
You do not currently have access to this content.