Geometrical effects of MEMS-based microfabricated inlet orifices on the suppression of parallel channel and upstream compressible volume instabilities commonly exhibited during flow boiling in parallel microchannels have been investigated. The heat fluxes at the onset of unstable boiling have been obtained over effective heat fluxes ranging from 9 to 614Wcm2 and mass fluxes from 115to389kgm2s. A dimensionless parameter M, which accounts for the pressure drop increase imposed by the inlet restrictors, has been used to correlate the extent of flow instability suppression. It has been shown that the onset of unstable boiling asymptotically increases with M. At sufficiently high M values, parallel channels and upstream compressible volume instabilities are completely eradicated although it gives way to another instability to develop, namely, the critical heat flux conditions. A correlation has been developed in terms of M to predict the conditions leading to unstable boiling.

1.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 2001, “
Forced Convection Boiling in Microchannel Heat Sink
,”
J. Microelectromech. Syst.
1057-7157,
10
(
1
), pp.
80
87
.
2.
Kandlikar
,
S. G.
, 2002, “
Fundamental Issues Related to Flow Boiling in Minichannels and Microchannels
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
, pp.
389
407
.
3.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sink—I. Experimental Investigation and Assessment of Correlation Methods
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2755
2771
.
4.
Yun
,
R.
,
Kim
,
Y.
, and
Kim
,
M.-S.
, 2005, “
Convective Boiling Heat Transfer Characteristics of CO2 in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
2
), pp.
235
242
.
5.
Koşar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
, 2005, “
Boiling Heat Transfer in Rectangular Microchannels With Reentrant Cavities
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
23
), pp.
4867
4886
.
6.
Dupont
,
V.
, and
Thome
,
J. R.
, 2005, “
Evaporation in Microchannels: Influence of the Channel Diameter on Heat Transfer
,”
Microfluidic Nanofluidic
,
1
, pp.
119
127
.
7.
Koşar
,
A.
,
Kuo
,
C. J.
, and
Peles
,
Y.
, 2005, “
Reduced Pressure Boiling Heat Transfer in Rectangular Microchannels With Interconnected Reentrant Cavities
,”
ASME J. Heat Transfer
0022-1481,
127
(
10
), pp.
1106
1114
.
8.
Hapke
,
I.
,
Boye
,
H.
,
Schmidt
,
J.
, and
Staate
,
Y.
, 2000, “
Evaporation in Micro Heat Exchangers
,”
Chem. Eng. Technol.
0930-7516,
23
(
6
), pp.
496
500
.
9.
Li
,
H. Y.
,
Lee
,
P. C.
,
Tseng
,
F. G.
, and
Pan
,
C.
, 2004, “
Two-Phase Phenomena for Boiling in Two Parallel Microchannels
,” in
Proceedings of Second International Conference on Microchannels and Minichannels (ICMM2004)
, pp.
581
587
.
10.
Steinke
,
M. E.
, and
Kandlikar
,
S. G.
, 2004, “
An Experimental Investigation of Flow Boiling Characteristics of Water in Parallel Microchannels
,”
J. Heat Transfer
0022-1481,
126
(
4
), pp.
518
526
.
11.
Kandlikar
,
S. G.
, 2004, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
J. Heat Transfer
0022-1481,
126
(
1
), pp.
8
16
.
12.
Kuo
,
C. J.
,
Koşar
,
A.
,
Peles
,
Y.
,
Virost
,
S.
,
Mishra
,
C.
, and
Jensen
,
M. K.
, “
Bubble Dynamics During Boiling in Enhanced Surface Microchannels
,”
J. Microelectromechanical Systems
(submitted).
13.
Zhang
,
L.
,
Wang
,
E. N.
,
Goodson
,
K. E.
, and
Kenny
,
T. W.
, 2005, “
Phase Change Phenomena in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
8
), pp.
1572
1582
.
14.
Fu
,
B. R.
, and
Pan
,
C.
, 2005, “
Flow Pattern Transition Instability in a Microchannel With CO2 Bubbles Produced by Chemical Reaction
,”
Int. J. Heat Mass Transfer
0017-9310,
48
(
21–22
), pp.
4397
4409
.
15.
Kennedy
,
J. E.
,
Roach
,
G. M.
,
Dowling
,
M. F.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
,
Jeter
,
S. S.
, and
Quershi
,
Z. H.
, 2000, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,”
J. Heat Transfer
0022-1481,
122
(
1
), pp.
118
125
.
16.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2003, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
14
), pp.
2603
2614
.
17.
Stromberger
,
J. H.
,
Abdel-Khalik
,
S. I.
,
Ghiaasiaan
,
S. M.
, and
Jeter
,
S. S.
, 2003, “
The Onset of Flow Instability in Uniformly Heated Horizontal Microchannels
,” in
Proceedings of the ASME Summer Heat Transfer Conference, v 2003
, pp.
413
414
.
18.
Wu
,
H. Y.
, and
Cheng
,
P.
, 2004, “
Boiling Instability in Parallel Silicon Microchannels at Different Heat Flux
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3631
3641
.
19.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2005, “
On the Nature of Critical Heat Flux in Microchannels
,”
J. Heat Transfer
0022-1481,
127
, pp.
101
107
.
20.
Balasubramanian
,
P.
, and
Kandlikar
,
S. G.
, 2005, “
Experimental Study of Flow Patterns, Pressure Drop, and Flow Instabilities in Parallel Rectangular Minichannels
,”
Heat Transfer Eng.
0145-7632,
26
(
3
), pp.
20
27
.
21.
Cornwell
,
K.
, and
Kew
,
P. A.
, 1992, “
Boiling in Small Parallel Channels
,”
Proceedings of CEC Conference Energy Efficiency in Process Technology
,
Athens
, October 1992,
Elsevier Applied Sciences
, pp.
624
638
.
22.
Mertz
,
R.
,
Wein
,
A.
, and
Groll
,
M.
, 1996, “
Experimental Investigation of Flow Boiling Heat Transfer in Narrow Channels
,” Int. J.
Heat Technol.
0392-8764,
14
(
2
), pp.
47
54
.
23.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
, 1999, “
Phase Change in Microchannel Heat Sinks With Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
1057-7157,
8
(
4
), pp.
358
365
.
24.
Kandlikar
,
S. G.
, 2001, “
Critical Heat Flux in Subcooled Flow Boiling-an Assessment of Current Understanding and Future Directions for Research
,”
Multiphase Sci. Technol.
0276-1459,
13
(
3
), pp.
207
232
.
25.
Qu
,
W.
, and
Mudawar
,
I.
, 2003, “
Measurement and Prediction of Pressure Drop in Two-Phase Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
46
(
15
), pp.
2737
2753
.
26.
Bergles
,
A. E.
, and
Kandlikar
,
S. G.
, 2003, “
Critical Heat Flux in Microchannels: Experimental Issues and Guidelines for Measurement
,”
First International Conference on Microchannels and Minichannels
, Rochester, New York, April 24–25, pp.
141
147
.
27.
Kandlikar
,
S. G.
, 2002, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer During Boiling in Minichannels Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
0145-7632,
23
(
1
), pp.
5
23
.
28.
Bergles
,
A. E.
,
Lopina
,
R. F.
, and
Fiori
,
M. P.
, 1967, “
Critical-Heat-Flux and Flow-Pattern Observations for Low-pressure Water Flowing in Tubes
,”
J. Heat Transfer
0022-1481,
89
(
1
), pp.
69
74
.
29.
Bergles
,
A. E.
, 1962, “
Forced Convection Surface Boiling Heat Transfer and Burnout in Tubes of Small Diameter
,” Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, Massachusetts.
30.
Ruan
,
S. W.
,
Bartsch
,
G.
, and
Yang
,
S. M.
, 1993, “
Characteristics of the Critical Heat Flux for Downward Flow in a Vertical Tube at Low Flow Rate and Low Pressure Conditions
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
296
306
.
31.
Ozawa
,
M.
,
Umekawa
,
H.
,
Mishima
,
K.
,
Hibiki
,
T.
, and
Saito
,
Y.
, 2001, “
CHF in Oscillatory Flow Boiling Channels
,”
Inst. Chem. Eng. Symp. Ser.
0307-0492,
79
, pp.
389
401
.
32.
Bouré
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
, 1973, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
0029-5493,
25
, pp.
165
192
.
33.
Daleas
,
R. S.
, and
Bergles
,
A. E.
, 1965, “
Effects of Upstream Compressibility on Subcooled Critical Heat Flux
,” ASME Paper No. 65-HT 67, ASME, New York.
34.
Maulbetsch
,
J. S.
, and
Griffith
,
P.
, 1966, “
A Study of System-Induced Instabilities in Forced-Convection Flows With Subcooled Boiling
,” MIT Engineering Projects Lab Report No. 5382-35.
35.
Podowski
,
M. Z.
,
Instabilities in Two-Phase Systems: Modern Development and Advances
,
Elsevier Science
,
Amsterdam
, 1992, pp.
271
315
.
36.
Kandlikar
,
S. G.
,
Willistein
,
D. A.
, and
Borrelli
,
J.
, 2005, “
Experimental Evaluation of Pressure Drop Elements and Fabricated Nucleation Sites for Stabilizing Flow Boiling in Minichannels and Microchannels
,”
Third International Conference on Microchannels and Minichannels
, Toronto, Ontario, June 13–15, ICMM2005–75197.
37.
Geiger
,
G. E.
, “
Sudden Contraction Losses in Single and Two-Phase Flow
,” PhD. thesis, University of Pittsburgh, 1964.
38.
Shah
,
R. K.
, and
London
,
A. L.
, 1978, “
Laminar Flow Forced Convection in Ducts
,” in
Advances in Heat Transfer
,
Academic
,
New York
, Suppl. 1.
39.
Gunther
,
A. Y.
, and
Shaw
,
W. A.
, 1945, “
A General Correlation of Friction Factors for Various Types of Surfaces in Cross Flow
,”
Trans. ASME
0097-6822,
67
, pp.
643
660
.
40.
Abdelall
,
F. F.
,
Hahn
,
G.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. S.
,
Yoda
,
M.
, and
Sadowski
,
D. L.
, 2005, “
Pressure Drop Caused by Abrupt Flow Area Changes in Smalll Channels
,”
Exp. Therm. Fluid Sci.
0894-1777,
29
, pp.
425
434
.
41.
Kline
,
S.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
(
1
), pp.
3
8
.
42.
Qu
,
W.
, and
Mudawar
,
I.
, 2004, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
5749
5763
.
43.
Bowring
,
R. W.
, 1972, “
A Simple but Accurate Round Tube Uniform Heat Flux
,” Dryout Correlation Over the Pressure Range 0.7-17MN∕m2 (100-2500psia), AEEW-R 789.
44.
Katto
,
Y.
, and
Ohne
,
H.
, 1984, “
An Improved Version of the Generalized Correlation of Critical Heat Flux for Convection Boiling in Uniformly Heated Vertical Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
27
(
9
), pp.
1641
1648
.
45.
Celata
,
G. P.
, and
Mariani
,
A.
, “
CHF and Post-CHF (Post-Dryout) Heat Transfer-Handbook of Phase Change: Boiling and Condensation
,”
Taylor and Francis
,
Philadelphia
, 1999, pp.
443
493
.
You do not currently have access to this content.