The magnetic convection of paramagnetic fluid in a cylindrical enclosure is studied experimentally and numerically. The upper side wall of the cylinder is cooled and the lower side wall heated, an unstable configuration. The whole system is placed coaxially in a bore of a superconducting magnet in the position of the minimum radial component of magnetic buoyancy force at the middle cross section of the enclosure. The stable configuration— when the whole system is placed inversely and the horizontal axial case are also considered. As a paramagnetic fluid an aqueous solution of glycerol with the gadolinium nitrate hexahydrate is used. The isotherms in the middle-height cross section are visualized by thermochromic liquid crystal slurry. For the unstable configuration the magnetic buoyancy force acts to assist the gravitational buoyancy force to give multiple spoke patterns at the mid cross section. The stable configuration gives an almost stagnant state without the magnetic field. Application of the magnetic field induces the convective flow similar to the unstable configuration. For the horizontal configuration a large roll convective flow (without the magnetic field) is changed under the magnetic field to the spoke pattern. The numerical results correspond to the experimental results.

1.
Chandrasekhar
,
S.
, 1961,
Hydrodynamic and Hydromagnetic Stability
,
Dover Publications, Inc.
,
New York
.
2.
Ozoe
,
H.
, 2000, “
Effect of a Magnetic Field in Czochralski Silicon Crystal Growth
,”
Modelling of Transport Phenomena in Crystal Growth
,
WIT Press
,
Southampton
, pp.
201
237
.
3.
Ezaki
,
K.
,
Kaneda
,
M.
,
Tagawa
,
T.
, and
Ozoe
,
H.
, 2003, “
Numerical Computation for the Melt Convection of the Model System of Continuous Steel Casting With Various Magnetic Fields
,”
ISIJ Int.
0915-1559,
43
, pp.
907
914
.
4.
Bednorz
,
J. G.
, and
Muller
,
K. A.
, 1986, “
Possible High TC Superconductivity in the Ba–La–Cu–O System
,”
Z. Phys. B: Condens. Matter
0722-3277,
64
, pp.
189
193
.
5.
Braithwaite
,
D.
,
Beaugnon
,
E.
, and
Tournier
,
R.
, 1991, “
Magnetically Controlled Convection in a Paramagnetic Fluid
,”
Nature (London)
0028-0836,
354
, pp.
134
136
.
6.
Wakayama
,
N. I.
, 1993, “
Magnetic Promotion of Combustion in Diffusion Flames
,”
Combust. Flame
0010-2180,
93
, pp.
207
214
.
7.
Ikezoe
,
Y.
,
Hirota
,
N.
,
Nakagawa
,
J.
, and
Kitazawa
,
K.
, 1998, “
Making Water Levitate
,”
Nature (London)
0028-0836,
393
, pp.
749
750
.
8.
Wakayama
,
M.
, and
Wakayama
,
N. I.
, 2000, “
Magnetic Acceleration of Inhaled and Exhaled Flows in Breathing
,”
Jpn. J. Appl. Phys., Part 1
0021-4922,
39
, pp.
262
264
.
9.
Kaneda
,
M.
,
Tagawa
,
T.
, and
Ozoe
,
H.
, 2002, “
Convection Induced by a Cusp-Shaped Magnetic Field for Air in a Cube Heated From Above and Cooled From Below
,”
ASME J. Heat Transfer
0022-1481,
124
, pp.
17
25
.
10.
Maki
,
S.
,
Tagawa
,
T.
, and
Ozoe
,
H.
, 2002, “
Enhanced Convection or Quasi-Conduction States Measured in a Superconducting Magnet for Air in a Vertical Cylindrical Enclosure Heated From Below and Cooled From Above in a Gravity Field
,”
ASME J. Heat Transfer
0022-1481,
124
(
4
), pp.
667
673
.
11.
Tagawa
,
T.
,
Shigemitsu
,
R.
, and
Ozoe
,
H.
, 2002, “
Magnetizing Force Modeled and Numerically Solved for Natural Convection of Air in a Cubic Enclosure: Effect of the Direction of the Magnetic Field
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
267
277
.
12.
Bai
,
B.
,
Yabe
,
A.
, and
Wakayama
,
N. I.
, 1991, “
Quantitative Analysis of Air Convection Caused by Magnetic-Fluid Coupling
,”
AIAA J.
0001-1452,
37
(
12
), pp.
1538
1543
.
13.
Japikse
,
D.
,
Jallouk
,
P. A.
, and
Winter
,
E. R. F.
, 1971, “
Single-Phase Transport Processes in the Closed Thermosyphon
,”
Int. J. Heat Mass Transfer
0017-9310,
14
, pp.
869
887
.
14.
Bayley
,
F. J.
, and
Lock
,
G. S. H.
, 1965, “
Heat Transfer Characteristics of the Closed Thermosyphon
,”
ASME J. Heat Transfer
0022-1481,
87
, pp.
30
40
.
15.
Lock
,
G. S. H.
, and
Liu
,
Y.
, 1989, “
The Effect of Geometry on the Performance of the Closed Tube Thermosyphon at Low Rayleigh numbers
,”
Int. J. Heat Mass Transfer
0017-9310,
32
(
6
), pp.
1175
1182
.
16.
Lock
,
G. S. H.
, and
Kirchner
,
J. D.
, 1992, “
Some Characteristics of the Inclined, Closed Tube Thermosyphon Under Low Rayleigh Number Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
35
(
1
), pp.
165
173
.
17.
Ishihara
,
I.
,
Fukui
,
T.
, and
Matsumoto
,
R.
, 2002, “
Natural Convection in a Vertical Rectangular Enclosure With Symmetrically Localized Heating and Cooling Zones
,”
Int. J. Heat Fluid Flow
0142-727X,
23
, pp.
366
372
.
18.
Ishihara
,
I.
,
Imanishi
,
R.
,
Fujiwara
,
M.
, and
Matsumoto
,
R.
, 2002, “
Natural Convection in a Single-Phase Closed Thermosyphon
,”
Proc. 10th Int. Symposium on Flow Visualization
, Kyoto, Japan, FO332.
19.
VDI-Wärmeatlas, VDI-Verlag, 1997.
20.
Ozoe
,
H.
,
Toh
,
K.
, and
Inoue
,
T.
, 1991, “
Transition Mechanism of Flow Modes in Czochralski Convection
,”
J. Cryst. Growth
0022-0248,
110
, pp.
472
489
.
21.
Ozoe
,
H.
, and
Toh
,
K.
, 1998, “
A Technique to Circumvent a Singularity at a Radial Center With Application for a Three-Dimensional Cylindrical System
,”
Numer. Heat Transfer, Part B
1040-7790,
33
(
3
), pp.
355
365
.
22.
Hirt
,
C. W.
,
Nichols
,
B. D.
, and
Romero
,
N. C.
, 1975, “
A Numerical Solution Algorithm for Transient Fluid Flows
,” Technical Report No. LA-5852,
Los Alamos Scientific Laboratory
.
You do not currently have access to this content.