Giant magnetoresistance (GMR) head technology is one of the latest advancements in the hard disk drive (HDD) storage industry. The GMR head multilayer structure consists of alternating layers of extremely thin metallic ferromagnetic and nonmagnetic films. A large decrease in the electrical resistivity from antiparallel to parallel alignment of the film magnetizations is observed, known as the GMR effect. The present work characterizes the in-plane electrical and thermal conductivities of CuCoFe GMR multilayer structures in the temperature range of 50K to 340K using Joule-heating and electrical resistance thermometry on suspended bridges. The thermal conductivity of the GMR layer monotonically increases from 25Wm1K1 (at 55K) to nearly 50Wm1K1 (at room temperature). We also report a GMR ratio of 17% and a large magnetothermal resistance effect (GMTR) of 25% in the CuCoFe multilayer structure.

1.
Thompson
,
D. A.
, and
Best
,
J. S.
, 2000, “
The Future of Magnetic Data Storage Technology
,”
IBM J. Res. Dev.
0018-8646,
44
(
3
), pp.
311
322
.
2.
Wallash
,
A.
, 2003, “
Electrostatic Discharge (ESD) Challenges in Magnetic Recording: Past, Present and Future
,”
Proc. IEEE International Reliability Physics Symposium
, Dallas, TX, March 30–April 4, pp.
222
228
.
3.
Yang
,
Y.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
, 2003, “
Modeling of Temperature Rise in Giant Magnetoresistive (GMR) Sensor during an Electrostatic Discharge (ESD) Event
,”
ASME Summer Heat Transfer Conference
, HT2003-47266, Las Vegas, Nevada, July 21–23.
4.
Wallash
,
A.
, and
Kim
,
Y. K.
, 1997, “
Electrostatic Discharge Sensitivity of Giant Magnetoresistive Recording Heads
,”
J. Appl. Phys.
0021-8979,
81
, pp.
4921
4923
.
5.
Wallash
,
A.
, and
Kim
,
Y. K.
, 1998, “
Magnetic Changes in GMR Heads caused by Electrostatic Discharge
,”
IEEE Trans. Magn.
0018-9464,
34
, pp.
1519
1521
.
6.
Baibich
,
M. N.
,
Broto
,
J. M.
,
Fert
,
A.
,
Nguyen Van Dau
,
F.
,
Petroff
,
F.
,
Eitenne
,
P.
,
Creuzet
,
G.
,
Friederich
,
A.
, and
Chazelas
,
J.
, 1988, “
Giant Magnetoresistance of (001)Fe∕(001)Cr Magnetic Superlattices
,”
Phys. Rev. Lett.
0031-9007,
61
, pp.
2472
2475
.
7.
Binasch
,
G.
,
Grünberg
,
P.
,
Saurenbach
,
F.
, and
Zinn
,
W.
, 1989, “
Enhanced Magnetoresistance in Layered Magnetic Structures with Antiferromagnetic Interlayer Exchange
,”
Phys. Rev. B
0163-1829,
39
, pp.
4828
4830
.
8.
Persat
,
N.
,
Van den Berg
,
H. A. M.
, and
Dinia
,
A.
, 1999, “
Electrical Transport in Metallic Thin Films for Giant Magnetoresistance Modeling Purposes
,”
J. Magn. Magn. Mater.
0304-8853,
198–199
, pp.
89
91
.
9.
Wang
,
S. X.
,
Yamada
,
K.
, and
Bailey
,
W. E.
, 2000, “
Specularity in GMR Spin Valves and In Situ Electrical and Magnetotransport Measurements
,”
IEEE Trans. Magn.
0018-9464,
36
(
5
), pp.
2841
2846
.
10.
Tsui
,
F.
,
Chen
,
B.
,
Wellman
,
J.
,
Uher
,
C.
, and
Clarke
,
R.
, 1997, “
Heat Conduction of (111) Co∕Cu Superlattices
,”
J. Appl. Phys.
0021-8979,
81
(
8
), pp.
4586
4588
.
11.
Shi
,
J.
,
Pettit
,
K.
,
Kita
,
E.
,
Parkin
,
S. S. P.
,
Nakatani
,
R.
, and
Salamon
,
M. B.
, 1996, “
Field-dependent Thermoelectric Power and Thermal Conductivity in Multilayered and Granular Giant Magnetoresistive Systems
,”
Phys. Rev. B
0163-1829,
54
(
21
), pp.
15273
15283
.
12.
Piraux
,
L.
,
Cassart
,
M.
,
Iiang
,
I.
,
Xiao
,
I.
, and
Chien
,
C. L.
, 1993, “
Magnetothermal Transport Properties of Granular Co‐Ag Solids
,”
Phys. Rev. B
0163-1829,
48
(
1
), pp.
638
641
.
13.
Sato
,
H.
,
Aoki
,
Y.
,
Kobayashi
,
Y.
,
Yamamoto
,
H.
, and
Shinjo
,
T.
, 1993, “
Giant Magnetic Field Effect on Thermal Conductivity of Magnetic Multilayers, Cu∕Co∕Cu∕Ni(Fe)
,”
J. Phys. Soc. Jpn.
0031-9015,
62
(
2
), pp.
431
434
.
14.
Sato
,
H.
,
Henmi
,
H.
,
Kobayashi
,
Y.
, and
Aoki
,
Y.
, 1994, “
Giant Magnetoresistance Related Transport Properties in Multilayers and Bulk Materials
,”
J. Appl. Phys.
0021-8979,
76
(
10
), pp.
6919
6924
.
15.
Tai
,
Y. C.
,
Mastrangelo
,
C. H.
, and
Muller
,
R. S.
, 1988, “
Thermal Conductivity of Heavily Doped Low-pressure Chemical Vapor Deposited Polycrystalline Silicon Films
,”
J. Appl. Phys.
0021-8979,
63
(
5
), pp.
1442
1447
.
16.
Lu
,
L.
,
Yi
,
W.
, and
Zhang
,
D. L.
, 2001, “
3ω Method for Specific Heat and Thermal Conductivity Measurements
,”
Rev. Sci. Instrum.
0034-6748,
72
(
3
), pp.
2996
3003
.
17.
Holman
,
J. P.
, 1984,
Experimental Methods for Engineers
,
McGraw-Hill
, New York, pp.
50
57
.
18.
Sondheimer
,
E. H.
, 1952, “
The Mean Free Path of Electrons in Metals
,”
Adv. Phys.
0001-8732,
1
, pp.
1
42
.
19.
Qiu
,
T. Q.
, and
Tien
,
C. L.
, 1993, “
Size Effects on Nonequilibrium Laser Heating of Metal Films
,”
ASME J. Heat Transfer
0022-1481,
115
(
4
), pp.
842
847
.
20.
Majumdar
,
K.
,
Chen
,
J.
, and
Hershfield
,
S.
, 1998, “
Calculation of Giant Magnetoresistance in Laterally Confined Multilayers in the Current-In-Plane Geometry
,”
Phys. Rev. B
0163-1829,
57
(
5
), pp.
2950
2954
.
21.
Mayadas
,
A. F.
, and
Shatzkes
,
M.
, 1970, “
Electrical-Resistivity Model for Polycrystalline Films: The Case of Arbitrary Reflection at External Surfaces
,”
Phys. Rev. B
0556-2805,
1
(
4
), pp.
1382
1389
.
22.
Zhang
,
Y.
,
Ong
,
N. P.
,
Xu
,
Z. A.
,
Krishana
,
K.
,
Gagnon
,
R.
, and
Taillefer
,
L.
, 2000, “
Determining the Wiedemann-Franz Ratio from the Thermal Hall Conductivity: Application to Cu and YBa2Cu3O6.95
,”
Phys. Rev. Lett.
0031-9007,
84
(
10
), pp.
2219
2222
.
23.
Asheghi
,
M.
,
Kurabayashi
,
K.
,
Kasnavi
,
R.
, and
Goodson
,
K. E.
, 2002, “
Thermal Conduction in Doped Single-Crystal Silicon Films
,”
J. Appl. Phys.
0021-8979,
91
(
8
), pp.
5079
5088
.
24.
Zhang
,
S.
,
Yang
,
Y.
,
Barmak
,
K.
, and
Asheghi
,
M.
, 2004, “
High Resolution Nanocalorimetry
,”
ASME International Mechanical Engineering Congress & Exposition
, IMECE-62332, November 13–29, Anaheim, CA.
You do not currently have access to this content.