Effects of orientations of porous graphite and smooth copper surfaces, measuring 10mm×10mm, on saturation nucleate boiling and critical heat flux (CHF) of FC-72 dielectric liquid and of liquid subcooling (0, 10, 20, and 30K) on nucleate boiling in the upward facing orientation are investigated. Inclination angles (θ) considered are 0deg (upward-facing), 60, 90, 120, 150, and 180deg (downward facing). The values of nucleate boiling heat flux, nucleate boiling heat transfer coefficient (NBHTC), and CHF are compared with those measured on the smooth copper surface of the same dimensions and CHF values on both copper and porous graphite are compared with those reported by other investigators on the smooth surfaces and microporous coatings. Results demonstrated higher NBHTC and CHF on porous graphite, particularly in the downward-facing orientation (θ=180deg). In the upward-facing orientation, NBHTCs on both surfaces decrease with increased subcooling, but increase with increased surface superheat reaching maxima then decrease with further increase in surface superheat. In saturation boiling on copper and both saturation and subcooled boiling on porous graphite these maxima occur at or near the end of the discrete bubble region, and near CHF in subcooled boiling on copper. Maximum saturation NBHTC on porous graphite increases with decreased surface superheat and inclination angle, while that on copper increases with increased surface superheat and decreased surface inclination. At low surface superheats, saturation nucleate boiling heat flux increases with increased inclination, but decreases with increased inclination at high surface superheats, consistent with previously reported data for dielectric and nondielectric liquids. The fractional decreases in saturation CHF with increased θ on smooth copper and microporous coatings are almost identical, but markedly larger than on porous graphite, particularly in the downward-facing orientation. In this orientation, saturation CHF on porous graphite of 16Wcm2 is much higher than on copper (4.9Wcm2) and as much as 53% of that in the upward-facing orientation, compared to only 18% on copper.

1.
Knickerbocker
,
J. U.
,
et al.
, 2002, “
An Advanced Multichip Module (MCM) for High-Performance UNIX Servers
,”
IBM J. Res. Dev.
0018-8646,
46
(
6
), pp.
779
804
.
2.
ITRS, International Technology Roadmap for Semiconductors
, 2004.
3.
Rainey
,
K. N.
, and
You
,
S. M.
, 2000, “
Pool Boiling Heat Transfer from Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
J. Heat Transfer
0022-1481,
122
, pp.
509
516
.
4.
Rainey
,
K. N.
,
You
,
S. M.
, and
Lee
,
S.
, 2003, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling from Microporous Surfaces in FC-72
,”
J. Heat Transfer
0022-1481,
125
, pp.
75
83
.
5.
El-Genk
,
M. S.
, and
Bostanci
,
H.
, 2003a, “
Saturation Boiling of HFE-7100 from a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
1841
1854
.
6.
El-Genk
,
M. S.
, and
Bostanci
,
H.
, 2003b, “
Combined Effects of Subcooling and Surface Orientation on Pool Boiling of HFE-7100 from a Simulated Electronic Chip
,”
Exp. Heat Transfer
0891-6152,
16
, pp.
281
301
.
7.
Chen
,
X. Y.
,
Toh
,
K. C.
,
Wong
,
T. N.
,
Chai
,
J. C.
,
Pinjala
,
D.
,
Navas
,
O. K.
,
Ganesh
,
H. Z.
, and
Kripesh
,
V.
, 2004, “
Direct Liquid Cooling of a Stacked MCM
,”
Proceedings 9th Intersociety Conference on Thermal Phenomena
,
Las Vegas, NV
, June 1–4,
IEEE
,
Piscataway, NJ
, Vol.
1
, pp.
199
206
.
8.
Ravigururajan
,
T. S.
, and
Drost
,
M. K.
, 1999, “
Single-Phase Flow Thermal Performance Characteristics of a Parallel Microchannel Heat Exchanger
,”
J. Enhanced Heat Transfer
1065-5131,
6
, pp.
383
393
.
9.
Mathews
,
W. S.
,
Lee
,
C. F.
, and
Peters
,
J. E.
, 2003, “
Experimental Investigations of Spray/Wall Impingement
,”
Atomization Sprays
1044-5110,
13
(
2,3
), pp.
223
242
.
10.
Pautsch
,
G.
, and
Shedd
,
T. A.
, 2005, “
Spray and Impingement Cooling with Single- and Multiple-Nozzle Arrays. Part I: Heat Transfer Data Using FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3167
3175
.
11.
Chang
,
J. Y.
, and
You
,
S. M.
, 1996, “
Heater Orientation Effects on Pool Boiling of Microporous Enhanced Surfaces in Saturated FC-72
,”
J. Heat Transfer
0022-1481,
118
, pp.
937
943
.
12.
Chang
,
J. Y.
, and
You
,
S. M.
, 1997a, “
Boiling Heat Transfer Phenomena from Micro-porous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
4437
4447
.
13.
Chang
,
J. Y.
, and
You
,
S. M.
, 1997b, “
Enhanced Boiling Heat Transfer from Micro-porous Surfaces: Effects of a Coating Composition and Method
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
4449
4460
.
14.
Arik
,
M.
, and
Bar-Cohen
,
A.
, 2001, “
Ebullient Cooling of Integrated Circuits by Novec Fluids
,”
Adv. Electron. Circuit Packag.
0065-2520,
2
, pp.
627
637
.
15.
Honda
,
H.
, and
Wei
,
J. J.
, 2003, “
Advances in Enhanced Boiling Heat Transfer From Electronic Components
,”
JSME Int. J., Ser. B
1340-8054,
46
, pp.
479
490
.
16.
Wei
,
J. J.
, and
Honda
,
H.
, 2004, “
Enhanced Boiling Heat Transfer From Electronic Components by Use of Surface Microstructures
,”
Exp. Therm. Fluid Sci.
0894-1777,
28
, pp.
159
169
.
17.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2005, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on a Porous Graphite Surface
,”
Energy Convers. Manage.
0196-8904,
46
, pp.
2455
2481
.
18.
Parker
,
J. L.
, and
El-Genk
,
M. S.
, 2005, “
Enhanced Saturation and Subcooled Boiling of FC-72 Dielectric Liquid
,”
Int. J. Heat Mass Transfer
0017-9310,
48
, pp.
3736
3752
.
19.
Priarone
,
A.
, 2005, “
Efect of Surface Orientation on Nucleate Boiling and Critical heat Flux of Dielectric Fluids
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
822
831
.
20.
El-Genk
,
M. S.
,
Saber
,
H. H.
, and
Parker
,
J. L.
, 2005, “
Thermal Analyses of Composite Copper/Porous Graphite Spreaders for Immersion Cooling Applications
,”
Proceedings of Conference on Integration and Packaging of MEMS, NEMS, and Electronics (InterPack’05)
, Paper No. IPACK2005-73226, San Francisco, CA, July 17–22,
ASME
,
New York
.
21.
Klett
,
J. W.
, and
Trammell
,
M.
, 2004, “
Parametric Investigation of a Graphite Foam Evaporator in a Thermosyphon With Fluorinert and a Silicon CMOS Chip
,”
IEEE Trans. Device Mater. Reliab.
1530-4388,
4
, pp.
626
637
.
22.
Coursey
,
J. S.
,
Kim
,
J.
, and
Boudreaux
,
P. J.
, 2005, “
Performance of Graphite Foam Evaporator for Use the Thermal Management
,”
J. Electron. Packag.
1043-7398,
127
, pp.
127
134
.
23.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2004a, “
Pool Boiling in Saturated and Subcooled HFE-7100 Dielectric Fluid From a Porous Graphite Surface
,”
Proceedings 9th Intersociety Conference on Thermal Phenomena
,
Las Vegas, NV
, June 1–4,
IEEE
,
Piscataway, NJ
, Vol.
1
, pp.
655
662
.
24.
El-Genk
,
M. S.
, and
Parker
,
J. L.
, 2004b, “
Pool Boiling in Saturated and Subcooled FC-72 Dielectric Fluid from a Porous Graphite Surface
,”
Proceedings, ASME International Mechanical Engineering Congress
, Paper No. IMECE2004-59905, Anaheim, CA, November 13–19,
ASME
,
New York
.
25.
Honda
,
H.
,
Takamastu
,
H.
, and
Wei
,
J. J.
, 2002, “
Enhanced Boiling of FC-72 on Silicon Chips With Micro-Pin-Fins and Submicron Scale Roughness
,”
J. Heat Transfer
0022-1481,
124
, pp.
383
390
.
26.
Howard
,
A. H.
, and
Mudawar
,
I.
, 1999, “
Orientation Effects on Pool Boiling Critical Heat Flux (CHF) and Modeling of CHF for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
1665
1688
.
27.
Mudawar
,
I.
,
Howard
,
A. H.
, and
Gersey
,
C. O.
, 1999, “
An Analytical Model for Near Saturated Pool Boiling Critical Heat Flux on Vertical Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
40
, pp.
2327
2339
.
28.
Rainey
,
K. N.
, and
You
,
S. M.
, 2001, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer from Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2589
2599
.
29.
Reed
,
S. J.
, and
Mudawar
,
I.
, 1997, “
Elimination of Boiling Incipience Temperature Drop in Highly Wetting Fluids using Spherical Contact With a Flat Surface
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
2439
2454
.
30.
Beduz
,
C.
,
Scurlock
,
R. G.
, and
Sousa
,
A. J.
, 1988, “
Angular Dependence on Boiling Heat Transfer Mechanisms in Liquid Nitrogen
,”
Advances in Cryogenic Engineering
,
R.
Fast
, ed., Vol.
33
,
Plenum Press
, New York, pp.
363
370
.
31.
El-Genk
,
M. S.
, and
Guo
,
Z.
, 1993, “
Transient Boiling From Inclined and Downward-facing Surfaces in a Saturated Pool
,”
Int. J. Refrig.
0140-7007,
16
, pp.
414
422
.
32.
Nishikawa
,
K.
,
Fujita
,
Y.
,
Uchida
,
S.
, and
Ohta
,
H.
, 1984, “
Effect of Surface Configuration on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
27
, pp.
1559
1571
.
33.
Vishnev
,
I. P.
,
Filatov
,
I. A.
,
Vinokur
,
Ya. G.
,
Gorokhov
,
V. V.
, and
Svalov
,
G. G.
, 1976, “
Study of Heat Transfer in Boiling of Helium on Surfaces with Various Orientations
,”
Heat Transfer-Sov. Res.
0440-5749,
8
, pp.
104
108
.
34.
Wei
,
J. J.
, and
Honda
,
H.
, 2003, “
Effects of Fin Geometry on Boiling Heat Transfer from Silicon Chips with Micro-Pin-Fins Immersed in FC-72
,”
Int. J. Heat Mass Transfer
0017-9310,
46
, pp.
4059
4070
.
35.
You
,
S. M.
,
Simon
,
T. W.
, and
Bar-Cohen
,
A.
, 1992, “
A Technique for Enhancing Boiling Heat Transfer with Application to Cooling of Electronic Equipment
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
0148-6411,
15
, pp.
823
831
.
36.
CRC Handbook of Chemistry and Physics
,
66th ed.
, 1986,
R. C.
Wheast
, ed.,
CRC Press
, Boca Raton, FL.
37.
Poco Graphite Inc., 2005, Poco HTC Product Information.
38.
Chang
,
J. Y.
, 1997, “
Enhanced Boiling Heat Transfer from Micro-Porous Surfaces
,” Ph.D. dissertation, University of Texas at Arlington, TX.
39.
Kutateladze
,
S. S.
, 1961, “
Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
0017-9310,
4
, pp.
31
45
.
40.
McNiel
,
A. C.
, 1992, “
Pool Boiling Critical Heat Flux in a Highly Wetting Liquid
,” Masters thesis, University of Minnesota, Minneapolis, MN.
41.
O’Connor
,
J. P.
, 1994, “
Enhancement of Pool Boiling Heat Transfer in Highly Wetting Dielectric Liquids
,” Ph.D. dissertation, University of Texas at Arlington, TX.
42.
Liu
,
Z. W.
,
Lin
,
W. W.
,
Lee
,
D. J.
, and
Peng
,
X. F.
, 2001, “
Pool Boiling of FC-72 and HFE-7100
,”
J. Heat Transfer
0022-1481,
123
, pp.
399
400
.
43.
Rainey
,
K. N.
, 2001, “
Pool and Flow Boiling Heat Transfer from Microporous Flat and Finned Surfaces in FC-72
,” Ph.D. dissertation, University of Texas at Arlington, TX.
44.
Reed
,
S. J.
, 1996, “
Elimination of Boiling Incipience Temperature Drop and Enhancement of Boiling Heat Transfer in Highly Wetting Fluids Through Low Contact Force Attachments
,” Master’s thesis, Purdue University, West Lafayette, IN.
45.
Howard
,
A. H.
, 1999, “
Effects on Orientation and Downward-Facing Convex Curvature on Pool Boiling Critical Heat Flux
,” Ph.D. dissertation, Purdue University, West Lafayette, IN.
You do not currently have access to this content.