To study transpiration cooling problems, an analytical solution of the local thermal nonequilibrium (LTNE) model with the second or third boundary conditions is presented. This solution is obtained through neglecting the thermal conduction of the fluid coolant in porous media. By the analytical solution, two problems are investigated. At first, the parameters which influence transpiration cooling effects are analyzed, and the analysis indicates that the cooling effects are dominated by coolant mass flow rate, the Biot number at the hot surface of porous plate, and the Biot number in the pores. Second, the error caused by the assumption of the local thermal equilibrium (LTE) model is quantitatively discussed, and the variation trend of the LTE error is analyzed. Based on the analytical solution and the error analysis, a quantitative criterion to choose the LTNE or LTE model is suggested, and the corresponding expression is also given in this paper.

1.
Hartnett
,
J. P.
, and
Eckert
,
E. R. G.
, 1957, “
Mass Transfer Cooling in a Laminar Boundary Layer with Constant Fluid Properties
,”
Trans. ASME
0097-6822,
79
, pp.
247
254
.
2.
Rohsenow
,
W. M.
,
Hartnett
,
J. P.
, and
Ganic
,
E. N.
, 1985,
Handbook of Heat Transfer Applications
,
McGraw-Hill
, New York.
3.
Eckert
,
E. R. G.
, and
Cho
,
H. H.
, 1994, “
Transition from Transpiration to Film Cooling
,”
Int. J. Heat Mass Transfer
0017-9310,
37
, pp.
3
8
.
4.
Landis
,
J. A.
, and
Bowman
,
W. J.
, 1996, “
Numerical Study of a Transpiration Cooled Rocket Nozzle
,”
AIAA Pap.
0146-3705
96-2580
.
5.
Trevino
,
C.
, and
Medina
,
A.
, 1999, “
Analysis of the Transpiration Cooling of a Thin Porous Plage in a Hot Laminar Convective Flow
,”
Eur. J. Mech. B/Fluids
0997-7546,
18
, pp.
245
260
.
6.
Glass
,
D. E.
,
Dilley
,
A. D.
, and
Kelly
,
H. N.
, 2001, “
Numerical Analysis of Convection/Transpiration Cooling
,”
J. Spacecr. Rockets
0022-4650,
38
, pp.
15
20
.
7.
Vafai
,
K.
, and
Kim
,
S. J.
, 1989, “
Forced Convection in a Channel Filled with a Porous Medium: An Exact Solution
,”
ASME J. Heat Transfer
0022-1481,
111
, pp.
1103
1106
.
8.
Quintard
,
M.
, and
Whitaker
,
S.
, 1995, “
Local Thermal Equilibrium for Transient Heat Conduction: Theory and Comparison with Numerical Experiments
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2779
2796
.
9.
Lee
,
D. Y.
, and
Vafai
,
K.
, 1999, “
Analytical Characterization and Conceptual Assessment of Solid and Fluid Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
423
435
.
10.
Marafie
,
A.
, and
Vafai
,
K.
, 2001, “
Analysis of Non-Darcian Effects on Temperature Differentials in Porous Media
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
4401
4411
.
11.
Vafai
,
K.
, and
Sozen
,
M.
, 1990, “
Analysis of Energy and Momentum Transport for Fluid Flow Through a Porous Bed
,”
ASME J. Heat Transfer
0022-1481,
96
, pp.
690
699
.
12.
Amiri
,
A.
,
Vafai
,
K.
, and
Kuzay
,
T. M.
, 1995, “
Effects of Boundary Conditions on Non-Darcian Heat Transfer Through Porous Media and Experimental Comparisons
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
651
664
.
13.
Nield
,
D. A.
, 1998, “
Effects of Local Thermal Non-equilibrium in Steady Convective Processes in a Saturated Porous Medium: Forced Convection in a Channel
,”
J. Porous Media
1091-028X,
1
, pp.
181
186
.
14.
Phanikumar
,
M. S.
, and
Mahajan
,
R. L.
, 2002, “
Non-Darcy Natural Convection in High Porosity Metal Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3781
3793
.
15.
Green
,
Leon J.
, 1952, “
Gas Cooling of a Porous Heat Source
,”
J. Appl. Mech.
0021-8936,
19
, pp.
173
178
.
16.
Burch
,
D. M.
,
Allen
,
R. W.
, and
Peavy
,
B. A.
, 1976, “
Transient Temperature Distributions within Porous Slabs Subjected to Sudden Transpiration Heating
,”
ASME J. Heat Transfer
0022-1481,
98
, pp.
221
225
.
17.
Polezhaev
,
Y. V.
, and
Seliverstov
,
E. M.
, 2002, “
A Universal Model of HeatTransfer in Systems with Penetration Cooling
,”
High Temp.
0018-151X,
40
, pp.
856
864
.
18.
Alazmi
,
B.
, and
Vafai
,
K.
, 2002, “
Constant Wall Heat Flux Boundary Conditions in Porous Media under Local Thermal Non-equilibrium Conditions
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3071
3087
.
19.
Alazmi
,
B.
, and
Vafai
,
K.
, 2000, “
Analysis of Variants within the Porous Media Transport Models
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
303
326
.
20.
Calmidi
,
V. V.
, and
Mahajan
,
R. L.
, 2000, “
Forced Convection in High Porosity Metal Foams
,”
ASME J. Heat Transfer
0022-1481,
122
, pp.
557
565
.
21.
Wakao
,
N.
,
Kaguei
,
S.
, and
Funazkri
,
T.
, 1979, “
Effect of Fluid Dispersion Coefficients on Particle-To-Fluid Heat Transfer Coefficients in Packed Beds
,”
Chem. Eng. Sci.
0009-2509,
34
, pp.
325
336
.
22.
Pixley
,
A. F.
, c1980,
Applied Linear Algebra
,
University Press of America
, Lanham, MD.
23.
Nield
,
D. A.
, and
Kuznetsov
,
A. V.
, 1999, “
Local Thermal Non-equilibrium Effects in Forced Convection in a Porous Media Channel: A Conjugate Problem
,”
Int. J. Heat Mass Transfer
0017-9310,
42
, pp.
3245
3252
.
24.
Nield
,
D. A.
,
Kuznetsov
,
A. V.
, and
Xiong
,
M.
, 2002, “
Effect of Local Thermal Non-equilibrium on Thermally Developing Forced Convection in a Porous Medium
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
4949
4955
.
You do not currently have access to this content.