Abstract

The transparent quartz glass window of a high temperature solar receiver (1000°C air outlet temperature, 15bars) has to be protected from overheating. The window is an axially symmetric part that can be approximated by a hemisphere with a cylindrical extension (diameter 0.31m, height 0.42m). The cooling is accomplished by impinging several air jets onto the concave window surface. Due to concentrated solar radiation, the air supply nozzles can only be installed at the circumference of the cylindrical extension. Symmetric configurations with six or nine nozzles, equally distributed around the window circumference, are examined. A second configuration generates a swirl in the window cavity by inclining the nozzles. In a third, asymmetric configuration, only nozzles on one side are simultaneously charged with mass flow, while a spatial homogenization of heat transfer is reached by periodically modulating the air flows with time. Computational fluid dynamics (CFD) calculations and laboratory measurements of the heat transfer have been carried out. In the performed 3-D simulations, the realizable k-ε model, the k-ω model, and the SST-k-ω model are compared. For measuring the heat transfer coefficient, a periodic-transient measurement technique with high spatial resolution is used. For the application of cooling of the solar receiver window, the jet cooling system with periodically modulated air flows is identified as the best solution.

1.
Winter
,
C. J.
,
Sizmann
,
R. L.
, and
Vant-Hull
,
L. L.
(Eds.), 1999,
Solar Power Plants
,
Springer Verlag
, Berlin, Heidelberg.
2.
Schwarzbözl
,
P.
,
Pitz-Paal
,
R.
,
Meinecke
,
W.
, and
Buck
,
R.
, 2000, “
Cost Optimized Solar Gas Turbine Cycles using Volumetric Air Receiver Technology
,”
Proc. 10th SolarPACES Int. Symposium “Solar Thermal 2000”
, March 8–10,
Sydney
, Australia.
3.
Buck
,
R.
,
Bräuning
,
T.
,
Denk
,
T.
,
Pfänder
,
M.
,
Schwarzbözl
,
P.
, and
Tellez
,
F.
, 2002, “
Solar-Hybrid Gas Turbine-based Power Tower Systems (REFOS)
,”
ASME J. Sol. Energy Eng.
0199-6231,
124
, pp.
2
9
.
4.
Buck
,
R.
,
Lüpfert
,
E.
, and
Téllez
,
F.
, 2000, “
Receiver for Solar-Hybrid Gas Turbine and CC Systems (REFOS)
,”
Proc. 10th SolarPACES Int. Symposium “Solar Thermal 2000”
,
Sydney
, Australia.
5.
Sugarmen
,
C.
,
Ring
,
A.
,
Buck
,
R.
,
Uhlig
,
R.
,
Beuter
,
M.
,
Marcos
,
M. J.
, and
Fernandez
,
V.
, 2002, “
Solar-Hybrid Gas Turbine Power System
,”
Proc. of 11th Solar-PACES Int. Symposium on Concentrated Solar Power and Chemical Energy Technologies
, September 4–6,
Zurich
, Switzerland.
6.
Buckingham
,
E.
, 1914, “
On Physically Similar Systems
,”
Phys. Rev.
0031-899X,
4
(
4
), p.
345
.
7.
Gambit 2, 2001, User’s Guide, Fluent, Inc., Lebanon, NH.
8.
Schlichting
,
H.
, and
Gersten
,
K.
, 1997,
Grenzschicht-Theorie
, 9. Auflage,
Springer Verlag
, Berlin.
9.
Wilcox
,
D. C.
, 1998,
Turbulence Modeling for CFD
, 2nd ed.,
DCW Industries, Inc.
, La Cañada, CA.
10.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
, 1995, “
A New k-ε Eddy-Viscosity Model for High Reynolds Number Turbulent Flows—Model Development and Validation
,”
Comput. Fluids
0045-7930,
24
(
3
), pp.
227
238
.
11.
Fluent 6.1, 2003, User’s Guide, Fluent, Inc., Lebanon, NH.
12.
Menter
,
F. R.
, 1994, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
0001-1452,
32
(
8
), pp.
1598
1605
.
13.
Wolfstein
,
M.
, 1969, “
The Velocity and Temperature Distribution of One-Dimensional Flow with Turbulence Augmentation and Pressure Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
12
, pp.
301
318
.
14.
Rist
,
D.
, 1995,
Dynamik Realer Gase
,
Springer Verlag
, Berlin.
15.
Ferziger
,
J. H.
, and
Perić
,
M.
, 1999,
Computational Methods for Fluid Dynamics
, 2nd ed.,
Springer-Verlag
, Berlin.
16.
Richardson
,
L. F.
, 1911, “
The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
210
, pp.
307
357
.
17.
Richardson
,
L. F.
, and
Gaunt
,
J. A.
, 1927, “
The Deferred Approach to the Limit. Part I. Single Lattice. Part II. Interpenetrating Lattices
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
226
, pp.
299
361
.
18.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa Publishers
, Albuquerque, NM.
19.
Roache
,
P. J.
, 1993, “
A Method for Uniform Reporting of Grid Refinement Studies, Quantification of Uncertainty in Computational Fluid Dynamics
,”
FED (Am. Soc. Mech. Eng.)
0888-8116,
158
, pp.
109
120
.
20.
Herwig
,
H.
, 1985,
Asymptotische Theorie zur Erfassung des Einflusses variabler Stoffwerte auf Impuls-und Wärmeübertragung
, Fortschr.-Ber. VDI, Reihe 7, Nr. 93, VDI-Verlag, Düsseldorf.
21.
Moffat
,
R. J.
, 1990, “
Experimental Heat Transfer
,” in
Hestroni
,
G.
, (Ed.):
Heat Transfer 1990
, Vol.
1
,
Hemisphere
, Washington, DC, pp.
187
205
.
22.
Hausen
,
H.
, 1959, “
Neue Gleichungen für die Wärmeübertragung bei freier oder erzwungener Strömung
,”
Allg. Wärmetechnik
,
9
(
4/5
), pp.
75
79
.
23.
Martin
,
H.
, 1977, “
Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces
,”
Adv. Heat Transfer
0065-2717,
13
(
1
), pp.
1
60
.
24.
Craft
,
T. J.
,
Graham
,
L. J. W.
, and
Launder
,
B. E.
, 1993, “
Impingement Jet Studies for Turbulence Model Assessment-II. An Examination of the Performance of Four Turbulence Models
,”
Int. J. Heat Mass Transfer
0017-9310,
36
(
10
), pp.
2685
2697
.
25.
Behnia
,
M.
,
Parneix
,
S.
,
Shabany
,
Y.
, and
Durbin
,
P. A.
, 1999, “
Numerical Study of Turbulent Heat Transfer in Confined and Unconfined Impinging Jets
,”
Int. J. Heat Fluid Flow
0142-727X,
20
, pp.
1
9
.
26.
Hofmann
,
H.
, 2005, Wärmeübergang beim pulsierenden Prallstrahl, dissertation, Universität Karlsruhe (TH).
You do not currently have access to this content.