The effects of positive and negative surface tension coefficients (σsurT) on both laminar and turbulent weld pool convection are numerically studied for a typical gas tungsten arc welding (GTAW) process. Three-dimensional turbulent weld pool convection in a pool is simulated using a suitably modified high Reynolds number kε model in order to account for the morphology of an evolving solid-liquid interface. Key effects of the sign of surface tension coefficient (σsurT) on the turbulent transport in a GTAW process are highlighted by comparing the turbulent simulation results with the corresponding ones from a laminar model, keeping all other process parameters unaltered. A scaling analysis is also performed in order to obtain order-of-magnitude estimates of weld pool penetration for both positive and negative surface tension coefficients. The scaling analysis predictions are in good agreement with the numerical results, in an order-of-magnitude sense.

1.
Oreper
,
G. M.
, and
Szekely
,
J.
, 1984, “
Heat and Fluid-Flow Phenomena in Weld Pools
,”
J. Fluid Mech.
0022-1120,
147
, pp.
53
79
.
2.
Correa
,
S. M.
, and
Sundell
,
R. E.
, 1986, “
A Computational and Experimental Study of Fluid Flow in Weld Pools
,” in
Kou
,
S.
, and
Mehrabian
,
R.
(eds.),
Modelling and Control of Casting and Welding processes
, pp.
211
227
,
Metallurgical Society
, Warrendale, PA.
3.
Kanouff
,
M.
, and
Greif
,
R.
, 1992, “
The Unsteady Development of a GTA Weld Pool
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
967
979
.
4.
Dutta
,
P.
,
Joshi
,
Y.
, and
Janaswami
,
R.
, 1995, “
Thermal Modelling of GTAW process with Non axisymmetric Boundary Conditions
,”
Numer. Heat Transfer, Part A
1040-7782,
27
, pp.
499
518
.
5.
Chakraborty
,
S.
,
Sarkar
,
S.
, and
Dutta
,
P.
, 2002, “
A Scaling Analysis of Momentum and Heat Transport in Gas Tungsten Arc Welding
,”
Sci. Technol. Weld. Joining
1362-1718,
7
, pp.
88
94
.
6.
Joshi
,
Y.
,
Dutta
,
P.
,
Espinosa
,
P.
, and
Schupp
,
P.
, 1997, “
Non-axisymmetric Convection in Stationary Gas Tungsten Arc Weld Pools
,”
Trans. ASME, Ser. C: J. Heat Transfer
0022-1481,
119
, pp.
164
171
.
7.
Atthey
,
D. R.
, 1980, “
A Mathematical Model for Fluid Flow in a Weld pool at high Currents
,”
J. Fluid Mech.
0022-1120,
98
, pp.
787
801
.
8.
Mundra
,
K.
,
Debroy
,
T.
,
Zacharia
,
T.
, and
David
,
S.
, 1992, “
Role of Thermophysical Properties in Weld Pool Modeling
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
71
, pp.
313
320
.
9.
Chao
,
R. T. C.
, and
Szekely
,
J.
, 1994, “
The Possible Role of Turbulence in GTA Weld Pool Behaviour
,”
Weld. J. (Miami, FL, U. S.)
0043-2296,
73
, pp.
25
31
.
10.
Hong
,
K.
,
Wakeman
,
D. C.
, and
Strong
,
A. B.
, 1995, “
The Predicted Influence of Turbulence in Stationary Gas Tungsten Arc welds
,”
Trends in Welding Research, Proceedings of 4th International Conference
,
Gatinberg
, TN, pp.
399
404
.
11.
Chakraborty
,
N.
,
Chakraborty
,
S.
, and
Dutta
,
P.
, 2003, “
Modelling of Turbulent Transport in Arc Welding Pools
,”
Int. J. Numer. Methods Heat Fluid Flow
0961-5539,
13
, pp.
7
30
.
12.
Chakraborty
,
N.
,
Chakraborty
,
S.
, and
Dutta
,
P.
, 2004, “
Three-Dimensional Modelling of Turbulent Welding Pool Convection in GTAW Processes
,”
Numer. Heat Transfer, Part A
1040-7782,
45
, pp.
391
413
.
13.
Brent
,
A. D.
,
Voller
,
V. R.
, and
Reid
,
K. J.
, 1988, “
Enthalpy-Porosity Technique for Modelling Convection-Diffusion Phase Change: Application to the Melting of a Pure Metal
,”
Numer. Heat Transfer
0149-5720,
13
, pp.
297
318
.
14.
Dutta
,
P.
,
Joshi
,
Y.
, and
Frenche
,
C.
, 1994, “
Determination of Gas Tungsten Arc Welding Efficiencies
,”
Exp. Therm. Fluid Sci.
0894-1777,
9
, pp.
80
89
.
15.
Shyy
,
W.
,
Pang
,
Y.
,
Hunter
,
G. B.
,
Wei
,
D. Y.
, and
Chen
,
M. H.
, 1992, “
Modelling of Turbulent Transport and Solidification during Continuous Ingot Casting
,”
Int. J. Heat Mass Transfer
0017-9310,
15
, pp.
1229
1245
.
16.
Aboutalebi
,
M. R.
,
Hassan
,
M.
, and
Guthrie
,
R. I. L.
, 1995, “
Numerical Study of Coupled Turbulent Flow and Solidification for Steel Slab Clusters
,”
Numer. Heat Transfer, Part A
1040-7782,
28
, pp.
279
299
.
17.
Durbin
,
P.
, and
Petterson Reif
,
B. A.
, 2001,
Statistical Theory and Modelling for Turbulent Flows
, 1st ed.,
John Wiley & Sons Ltd.
, New York.
18.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
, Washington, DC.
19.
Bejan
,
A.
, 1995,
Convection Heat Transfer
, 2nd ed.,
John Wiley and Sons
, New York.
20.
Chakraborty
,
N.
,
Chatterjee
,
D.
, and
Chakraborty
,
S.
, 2004, “
A Scaling Analysis of Turbulent Transport in Laser Surface Alloying Process
,”
J. Appl. Phys.
0021-8979,
96
(
8
), pp.
4569
4577
.
You do not currently have access to this content.