Abstract

The problem of laminar natural convection on a vertical baffled plate subjected to a periodic oscillation is investigated numerically. Of particular interest of this paper is the heat transfer characteristic with the oscillatory velocity being close to the flow velocity in the velocity boundary layer under nonoscillation condition. The results show that a sevenfold increase in space-time averaged Nusselt number is achieved. Three mechanisms that are responsible for the heat transfer enhancement are identified. In addition, the effects of the governing parameters on the heat transfer are studied over a wide range. The heat transfer enhancement is found to be increased with dimensionless oscillation frequency and amplitude, but decreased with the Grashof number. Another interest of this paper is to optimize the geometry of baffle plates and an optimal baffle height-spacing ratio 0.25–0.50 is found for higher heat transfer rate.

1.
Kurzweg
,
U. H.
, and
Zhao
,
L. D.
, 1984, “
Heat Transfer by High Frequency Oscillations: A New Hydrodynamic Technique for Achieving Large Effective Thermal Conductivities
,”
Phys. Fluids
1070-6631,
27
, pp.
2624
2627
.
2.
Kurzweg
,
U. H.
, 1985, “
Enhanced Heat Conduction in Fluids Subjected to Sinusoidal Oscillations
,”
J. Heat Transfer
0022-1481,
107
, pp.
459
462
.
3.
Kurzweg
,
U. H.
, 1986, “
Temporal and Spatial Distribution of Heat Flux in Oscillating Flow Subjected to an Axial Temperature Gradient
,”
Int. J. Heat Mass Transfer
0017-9310,
29
, pp.
1969
1977
.
4.
Ozawa
,
M.
, and
Kawamoto
,
A.
, 1991, “
Lumped-Parameter Modeling of Heat Transfer Enhanced by Sinusoidal Motion of Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
34
, pp.
3083
3094
.
5.
Nishio
,
S.
,
Shi
,
X. H.
, and
Zhang
,
W. M.
, 1995, “
Oscillation-Induced Heat Transport: Heat Transport Characteristics Along Liquid-Columns of Oscillation-Controlled Heat Transport Tubes
,”
Int. J. Heat Mass Transfer
0017-9310,
38
, pp.
2457
2470
.
6.
Walsh
,
T. E.
,
Yang
,
K. T.
,
Nee
,
V. W.
, and
Liao
,
Q. D.
, 1993, “
Forced Convection Cooling in Microelectronic Cabinets via Oscillatory Flow Techniques
,”
Exp. Heat Transfer
0891-6152,
7
(
2
) pp.
140
140
.
7.
Liao
,
Q. D.
,
Yang
,
K. T.
, and
Nee
,
V. W.
, 1995, “
Enhanced Microprocessor Chip Cooling by Channeled Zero-Mean Oscillatory Air Flow
,”
Advances in Electronic Packaging
, Vol.
2
, pp.
789
794
.
8.
Fusegi
,
T.
, 1996, “
Mixed Convection in Periodic Open Cavities With Oscillatory Throughflow
,”
Numer. Heat Transfer, Part A
1040-7782,
29
, pp.
33
47
.
9.
Brunold
,
C. R.
,
Hunns
,
J. C. B.
,
Mackley
,
M. R.
, and
Thompson
,
J. W.
, 1989, “
Experimental Observations on Flow Patterns and Energy Losses for Oscillatory Flows in Ducts with Sharp Edges
,”
Chem. Eng. Sci.
0009-2509,
44
, pp.
1227
1244
.
10.
Howes
,
T.
,
Mackley
,
M. R.
, and
Roberts
,
E. P. L.
, 1991, “
The Simulation of Chaotic Mixing and Dispersion for Periodic Flows in Baffled Channels
,”
Chem. Eng. Sci.
0009-2509,
46
, pp.
1669
1677
.
11.
Mackley
,
M. R.
, and
Stonestreet
,
P.
, 1995, “
Heat Transfer and Associated Energy Dissipation for Oscillatory Flow in Baffled Tubes
,”
Chem. Eng. Sci.
0009-2509,
50
, pp.
2211
2224
.
12.
Stephens
,
G. G.
, and
Mackley
,
M. R.
, 2002, “
Heat Transfer Performance for Batch Oscillatory Flow Mixing
,”
Exp. Therm. Fluid Sci.
0894-1777,
25
, pp.
583
594
.
13.
Fu
,
W. S.
, and
Yang
,
S. J.
, 2001, “
Heat Transfer Induced by a Body Moving in Opposition to a Flowing Fluid
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
89
98
.
14.
Fu
,
W. S.
, and
Tong
,
B. H.
, 2002, “
Numerical Investigation of Heat Transfer from a Heated Oscillating Cylinder in a Cross Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
3033
3043
.
15.
Fu
,
W. S.
, and
Tong
,
B. H.
, 2004, “
Numerical Investigation of Heat Transfer Characteristics of the Heated Blocks in the Channel with a Transversely Oscillating Cylinder
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
341
351
.
16.
Fu
,
W. S.
, and
Yang
,
S. J.
, 2001, “
A New Model for Heat Transfer of Fins Swinging Back and Forth in a Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
1687
1697
.
17.
Maruyama
,
S.
,
Ishikawa
,
M.
, and
Taira
,
K.
, 2000, Japanese patent No. 158594.
18.
Maruyama
,
S.
,
Tsubaki
,
K.
,
Taira
,
K.
, and
Sakai
,
S.
, 2004, “
Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert
,”
J. Oceanogr.
0916-8370,
60
, pp.
563
568
.
19.
Zhang
,
X. R.
,
Maruyama
,
S.
,
Sakai
,
S.
,
Tsubaki
,
K.
, and
Behnia
,
M.
, 2004, “
Flow Prediction in Upwelling Deep Seawater—the Perpetual Salt Fountain
,”
Deep-Sea Res., Part I
0967-0637,
51
, pp.
1145
1157
.
20.
Iwatsu
,
R.
,
Hyun
,
J. M.
, and
Kuwahara
,
K.
, 1992, “
Convection in a Differentially-Heated Square Cavity with a Torsionally-Oscillating Lid
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1069
1076
.
21.
Fu
,
W. S.
, and
Shieh
,
W. J.
, 1992, “
A Study of Thermal Convection in an Enclosure Induced Simultaneously by Gravity and Vibration
,”
Int. J. Heat Mass Transfer
0017-9310,
35
, pp.
1695
1710
.
22.
Zhang
,
X. R.
,
Maruyama
,
S.
, and
Sakai
,
S.
, 2004, “
Numerical Investigation of Laminar Natural Convection on a Heated Vertical Plate Subjected to a Periodic Oscillation
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
4439
4448
.
23.
Zhang
,
X. R.
,
Maruyama
,
S.
,
Sakai
,
S.
,
Tsubaki
,
K.
, and
Behnia
,
M.
, 2004, “
Mechanism of Turbulent Transport in Upwelling Deep Seawater Using the Perpetual Salt Fountain
,”
Deep-Sea Res., Part I
0967-0637, (to be published).
24.
Ostrach
,
S. S.
, 1953, “
An Analysis of Laminar Free Convection Flow and Heat Transfer About a Flat Plate Parallel to the Direction of the Generating Body Force
,” NASA Report, pp.
63
79
.
25.
Schlichting
,
H.
, 1979,
Boundary-Layer Theory
, seventh edition,
McGraw-Hill
, New York, pp.
93
95
.
You do not currently have access to this content.