Pure thermal plumes have been investigated by two-dimensional (2D) and three-dimensional (3D) particle imaging velocimetry (PIV) techniques. While classical plume features have been checked out, time-dependent analysis allows one to clearly detect contraction and expulsion phases which are mainly driven by turbulent structure behavior. Balance of momentum equation demonstrates the link between stronger structures and expulsion-contraction motion mainly dominated by plume engulfment during contraction phases. A ratio of 3 between entrained mass flow rate during contraction and expulsion phases has been estimated. A new method, never previously applied to pure thermal plume, allows one to accurately characterize entrainment mechanism and for the first time, the latter renders it possible to estimate the entrainment coefficient all along the plume height, even close to the heating source. Moreover, entrainment coefficient is found to be 20% higher with direct method as opposed to the classical differential one widely used in the literature. Such a huge gap is found to be due to the fluctuating density and velocity part. Even through it markedly contributes to an enhanced entrainment mechanism, the role of fluctuation was generally overlooked in the previous works devoted to entrainment coefficient estimate.

1.
Gebhart, B., Jaluria, Y., Mahajan, R., Sammakia, 1988, Buoyancy-induced Flows and Transport, Textbook ed., Hemisphere Publishing Corporation, New York.
2.
Elicer-Cortes
,
J. C.
,
Fuentes
,
J.
,
Valencia
,
A.
, and
Baudet
,
C.
,
2000
, “
Experimental Study of Transition to Turbulence of a Round Thermal Plume by Ultrasound Scattering
,”
Exp. J. Fluid Sci.
,
20
, pp.
137
149
.
3.
Morton
,
B. R.
,
Taylor
,
G.
, and
Turner
,
J. S.
,
1956
, “
Turbulent Gravitational Convection from Maintained and Instantaneous Sources
,”
Proc. R. Soc. London, Ser. A
,
A234
, pp.
1
24
.
4.
Taylor, G. “Dynamics of a Mass of Hot Gas Rising in Air,” U.S. Atomic Energy Commission, MDDC-919, LADC-276, 1945.
5.
Ricou
,
F. P.
, and
Spalding
,
D. B.
,
1961
, “
Measurements of Entrainment by Axisymmetrical Turbulent Jets
,”
J. Fluid Mech.
,
11
, pp.
21
32
.
6.
George
,
W. K.
,
Alpert
,
R. L.
, and
Tamanini
,
F.
,
1977
, “
Turbulence Measurements in an Axisymmetric Buoyant Plume
,”
Int. J. Heat Mass Transfer
,
20
, pp.
1145
1154
.
7.
Shabbir
,
A.
, and
George
,
W. K.
,
1994
, “
Experiments on Round Turbulent Buoyant Plume
,”
J. Fluid Mech.
,
275
, pp.
1
32
.
8.
Papanicolaou
,
P. N.
, and
List
,
E. J.
,
1988
, “
Investigations of Round Vertical Turbulent Buoyant Jets
,”
J. Fluid Mech.
,
195
, pp.
341
391
.
9.
Dehmani
,
L.
,
Doan-Kim
,
S.
, and
Gbahoue
,
L.
,
1996
, “
Turbulent Structure of an Axisymmetric Plume Penetrating a Strong Density Stratification
,”
Int. J. Heat Fluid Flow
,
17
, pp.
452
459
.
10.
Agrawal
,
A.
, and
Prasad
,
A. K.
,
2003
, “
Integral Solution for the Mean Flow Profiles of Turbulent Jets, Plumes, and Wakes
,”
J. Fluids Eng.
,
125
, pp.
813
822
.
11.
Brahimi
,
M.
,
Lamour
,
M.
, and
Doan Kim
,
S.
,
1988
, “
Champs moyens et fluctuants des panaches thermiques isole´s ou en interaction
,”
Rev. Gen. Therm.
,
315
, pp.
236
243
.
12.
Han
,
D.
, and
Mungal
,
M. G.
,
2001
, “
Direct Measurement of Entrainment in Reacting–Nonreacting Turbulent Jets
,”
Combust. Flame
,
124
, pp.
370
386
.
13.
Zhou
,
X.
,
Luo
,
K. H.
, and
Williams
,
J. J. R.
,
2001
, “
Large-Eddy Simulation of a Turbulent Forced Plume
,”
Eur. J. Mech. B/Fluids
,
20
, pp.
233
254
.
14.
Basu
,
A. J.
, and
Narasimha
,
R.
,
1999
, “
Direct Numerical Simulation of Turbulent Flows with Cloud-Like off Heating
,”
J. Fluid Mech.
,
385
, pp.
199
228
.
15.
Agrawal
,
A.
, and
Prasad
,
A. K.
,
2002
, “
Organizational Modes of Large-Scale Vortices in an Axisymmetric Turbulent Jet
,”
Flow, Turbul. Combust.
,
68
, pp.
359
377
.
16.
Agrawal
,
A.
, and
Prasad
,
A. K.
,
2004
, “
Evolution of a Turbulent Jet Subjected to Volumetric Heating
,”
J. Fluid Mech.
,
511
, pp.
95
123
.
17.
Guillou
,
B.
, and
Doan-Kim
,
S.
,
1983
, “
Etude Theorique du De´veloppement d’un Panache Thermique a syme´trie axiale-influence des proprie´te´s thermophysiques du fluide
,”
Int. Commun. Heat Mass Transfer
,
10
, pp.
101
109
.
18.
Beuther, P. D. and George, W. K., 1982, “The Turbulent Plume in a Stratified Environment,” Proc. Natl Congr. Theor. and Appl. Mech., Cornell University, Ithaca, NY.
19.
Dehmani
,
L.
,
Doan Kim
,
S.
,
Gbahoue
,
L.
, and
Ronge`re
,
F. X.
,
1996
, “
Influence of a Strong Density Stratification Axisymmetric Plume
,”
Exp. Fluids
,
21
, pp.
170
180
.
20.
Alkislar
,
M. B.
,
Lourenco
,
L. M.
, and
Krothapalli
,
A.
,
2000
, “
Stereoscopic PIV Measurements of Screeching Supersonic Jet
,”
J. Visualisation
,
3
(
2
), pp.
135
143
.
21.
Mun˜iz, L., “Particle Image Velocimetry Studies of Turbulent Non-Premixed Flames,” PhD thesis, Stanford University, Stanford, CA, 2000.
22.
Chen, C. J. and Rodi, W., 1980, Vertical Turbulent Buoyant Jets, Pergamon.
23.
Turner
,
J. S.
,
1969
, “
Buoyant Plumes and Thermals
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
29
44
.
24.
Zinoubi
,
J.
,
Maad
,
R. B.
, and
Belghith
,
A.
,
2004
, “
Influence of The Vertical Source-Cylinder Spacing on The Interaction of Thermal Plume With a Thermosiphon Flow: An Experimental Study
,”
Exp. Therm. Fluid Sci.
,
28
, pp.
329
336
.
25.
Dibble, R. W., Schefer, R. W., Chen, J. Y. and Hartmann, V., 1987, “Velocity and Density Measurements in a Turbulent Nonpremixed Flame with Comparison to Numerical Model Predictions,” Sandia Report, SAND85-8233, UC-304.
You do not currently have access to this content.