A thermal plasma flow is regarded as a multifunctional fluid with high energy density, high chemical reactivity, variable properties, and controllability by electromagnetic fields. Especially a radio frequency inductively coupled plasma (RF-ICP) flow has a large plasma volume, long chemical reaction time, and a high quenching rate. Besides, it is inherently clean because it is produced without internal electrodes. An RF-ICP flow is, therefore, considered to be very useful for nanoparticle synthesis. However, nanoparticle synthesis using an RF-ICP flow includes complicated phenomena with field interactions. In the present study, numerical analysis was conducted to investigate the synthesis of metallic nanoparticles using an advanced RF-ICP reactor. An advanced RF-ICP flow is generated by adding direct current (DC) discharge to a conventional RF-ICP flow in order to overcome the disadvantages of a conventional one. The objectives of the present work are to clarify the formation mechanism of metallic nanoparticles in advanced RF-ICP flow systems and to detect effective factors on required synthesis. A two-dimensional model as well as a one-dimensional model was introduced for nanoparticle growth to investigate effects of spatial distributions of thermofluid fields in RF-ICP flows on synthesized nanoparticles. In an advanced RF-ICP flow, a characteristic recirculation zone disappears due to a DC plasma jet. Larger numbers of nanoparticles with smaller size are produced by using an advanced RF-ICP flow. Thermofluid fields in RF-ICP flows can be controlled by applied coil frequency by means of skin effect. Larger numbers of nanoparticles with smaller size are produced near the central axis. Dispersion of particle size distributions can be suppressed by higher applied coil frequency through control of RF-ICP flows. Applied coil frequency can be a remarkably effective factor to control nanoparticle size distribution.

1.
Siegel
,
R. W.
, 1993, “
Synthesis and Properties of Nanophase Materials
,”
Mater. Sci. Eng., A
0921-5093,
A168
, pp.
189
197
.
2.
Yoshida
,
T.
, and
Akashi
,
K.
, 1981, “
Preparation of Ultrafine Iron Particles Using an RF Plasma
,”
Trans. Jpn. Inst. Met.
0021-4434,
22
(
6
), pp.
371
378
.
3.
Ono
,
T.
,
Kagawa
,
M.
,
Syuno
,
Y.
,
Ikebe
,
M.
, and
Muto
,
Y.
, 1987, “
Ultrafine BaPb1−xBixO3 Powders Prepared by the Spray-ICP Technique
,”
Plasma Chem. Plasma Process.
0272-4324,
7
(
2
), pp.
201
209
.
4.
Hasegawa
,
M.
,
Kato
,
Y.
,
Kagawa
, and
M.
,
Syuno
,
Y.
, 1996, “
Effect of Additive Oxides on Ultrafine CeO2 Particles Synthesized by the Spray-ICP Technique
,”
J. Mater. Sci. Lett.
0261-8028,
15
, pp.
1608
1611
.
5.
Okuyama
,
H.
,
Honma
,
K.
, and
Ohno
,
S.
, 1999, “
Photocatalytic Activity of Ultrafine TiO2 Particles Synthesized by an RF Plasma CVD
,”
J. Jpn. Inst. Met.
0021-4876,
63
(
1
), pp.
74
81
.
6.
Nishiyama
,
H.
, and
Shigeta
,
M.
, 2002, “
Numerical Simulation of an RF Inductively Coupled Plasma for Functional Enhancement by Seeding Vaporized Alkali Metal
,”
Eur. Phys. J.: Appl. Phys.
1286-0042,
18
(
2
), pp.
125
133
.
7.
Watanabe
,
T.
,
Nezu
,
A.
,
Abe
,
Y.
,
Ishii
,
Y.
, and
Adachi
,
K.
, 2003, “
Formation Mechanism of Electrically Conductive Nanoparticles by Induction Thermal Plasmas
,”
Thin Solid Films
0040-6090,
435
, pp.
27
32
.
8.
Girshick
,
S. L.
, and
Chiu
,
C.-P.
, 1990, “
Numerical Study of MgO Powder Synthesis by Thermal Plasma
,”
J. Aerosol Sci.
0021-8502,
21
(
5
), pp.
641
650
.
9.
Joshi
,
S. V.
,
Liang
,
Q.
,
Park
,
J. Y.
, and
Batdorf
,
J. A.
, 1990, “
Effect of Quenching Conditions on Particle Formation and Growth in Thermal Plasma Synthesis of Fine Powders
,”
Plasma Chem. Plasma Process.
0272-4324,
10
(
2
), pp.
339
358
.
10.
McFeaters
,
J. S.
,
Stephens
,
R. L.
,
Schwerdtfeger
,
P.
, and
Liddell
,
M.
, 1994, “
Numerical Modeling of Titanium Carbide Synthesis in Thermal Plasma Reactor
,”
Plasma Chem. Plasma Process.
0272-4324,
14–3
, pp.
333
360
.
11.
Ageorge
,
H.
,
Megy
,
S.
,
Chang
,
K.
,
Baronnet
J.-M.
,
Williams
,
J. K.
, and
Chapman
,
C.
, 1993, “
Synthesis of Aluminum Nitride in Transferred Arc Plasma Furnaces
,”
Plasma Chem. Plasma Process.
0272-4324,
13
(
4
), pp.
613
632
.
12.
Bilodeau
,
J.-F.
, and
Proulx
,
P.
, 1995, “
Analysis of the Synthesis of Ultrafine AIN Powders in an Induction Plasma Reactor
,”
Proc. of 12th Int. Symp. on Plasma Chemistry
, pp.
1201
1206
.
13.
Cruz
,
A. C.
, and
Munz
,
R. J.
, 1997, “
Vapor Phase Synthesis of Fine Particles
,”
IEEE Trans. Plasma Sci.
0093-3813,
25
(
5
), pp.
1008
1016
.
14.
Han
,
P.
, and
Yoshida
,
T.
, 2001, “
Numerical Investigations of the Thermophoretic Effects on Clusters Deposition During TPCVD Process
,”
Proc. of 15th Int. Symp. on Plasma Chemistry
,
2
, pp.
683
689
.
15.
Yang
,
Y.
,
Ong
,
J. L.
, and
Tian
,
J.
, 2002, “
In Vivo Evaluation of Modified Titanium Implant Surfaces Produced Using a Hybrid Plasma Spraying Processing
,”
Mater. Sci. Eng., R.
0927-796X,
20
, pp.
117
124
.
16.
Kawajiri
,
K.
,
Sato
,
T.
, and
Nishiyama
,
H.
, 2003, “
Experimental Analysis of a DC-RF Hybrid Plasma Flow
,”
Surf. Coat. Technol.
0257-8972,
171
, pp.
134
139
.
17.
Boulos
,
M. I.
,
Fauchais
,
P.
, and
Pfender
,
E.
, 1994,
Thermal Plasma
, Vol.
1
,
Plenum Press
, New York.
18.
Menart
,
J.
, and
Lin
,
H.
, 1998, “
Numerical Study of High-Intensity Free-Burning Arc
,”
J. Thermophys. Heat Transfer
0887-8722,
12
, pp.
500
506
.
19.
Hoffert
,
M. I.
, and
Lien
,
H.
, 1967, “
Quasi-One-Dimensional, Nonequilibrium Gas Dynamics of Partially Ionized Two-Temperature Argon
,”
Phys. Fluids
0031-9171,
10
, pp.
1769
1776
.
20.
Patankar
,
S. V.
, 1980,
Numerical Fluid Flow and Heat Transfer
,
Hemisphere
, New York.
21.
Friedlander
,
S. K.
, 1977,
Smoke, Dust and Haze
,
Wiley
, New York.
22.
Girshick
,
S. L.
,
Chiu
,
C.-P.
, and
McMurry
,
P. H.
, 1990, “
Time-Dependent Aerosol Models and Homogeneous Nucleation Rates
,”
Aerosol Sci. Technol.
0278-6826,
13
, pp.
465
477
.
23.
Japan Institute of Metals
, 1993,
Metal Data Book
,
Maruzen
, Japan.
24.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Sherwood
,
T. K.
, 1977,
The Properties of Gases and Liquids
,
3rd edition
,
McGraw-Hill
, New York.
25.
Epstein
,
P. S.
, 1956,
Investigations on the Theory of the Brownian Movement
,
Dover
, New York.
26.
Furth
,
R.
, 1924, “
On the Resistance Experienced by Spheres in Their Motion Through Gases
,”
Phys. Rev.
0031-899X,
23
, pp.
710
733
.
27.
Waldmann
,
L.
, and
Schmitt
,
K. H.
, 1966,
Thermophoresis and Diffusiopheresis of Aerosols, Chapter VI in Davies
,
Aerosol Science
, Academic, New York.
28.
Girshick
,
S. L.
,
Chiu
,
C.-P.
,
Muno
,
R.
,
Wu
,
C. Y.
,
Yang
,
L.
,
Singh
,
S. K.
, and
McMurry
,
P. H.
, 1993, “
Thermal Plasma Synthesis of Ultrafine Iron Particles
,”
J. Aerosol Sci.
0021-8502,
24
(
3
), pp.
367
382
.
29.
Ye
,
R.
,
Proulx
,
P.
, and
Boulos
,
M. I.
, 2000, “
Particle Turbulent Dispersion and Loading Effects in an Inductively Coupled Radio Frequency Plasma
,”
J. Phys. D
0022-3727,
33
, pp.
2154
2162
.
You do not currently have access to this content.