The critical heat flux (CHF) limit is an important consideration in the design of most flow boiling systems. Before the use of microchannels under saturated flow boiling conditions becomes widely accepted in cooling of high-heat-flux devices, such as electronics and laser diodes, it is essential to have a clear understanding of the CHF mechanism. This must be coupled with an extensive database covering a wide range of fluids, channel configurations, and operating conditions. The experiments required to obtain this information pose unique challenges. Among other issues, flow distribution among parallel channels, conjugate effects, and instrumentation need to be considered. An examination of the limited CHF data indicates that CHF in parallel microchannels seems to be the result of either an upstream compressible volume instability or an excursive instability rather than the conventional dryout mechanism. It is expected that the CHF in parallel microchannels would be higher if the flow is stabilized by an orifice at the entrance of each channel. The nature of CHF in microchannels is thus different than anticipated, but recent advances in microelectronic fabrication may make it possible to realize the higher power levels.

1.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
2000
, “
Fluid Flow and Heat Transfer at Micro- and Meso-Scales with Application to Heat Exchanger Design
,”
Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.
2.
Kandlikar
,
S. G.
, and
Grande
,
W. J.
,
2003
, “
Evolution of Microchannel Flow Passages—Thermohydraulic Performance and Fabrication Technology
,”
Heat Transfer Eng.
,
24
(
1
), pp.
3
17
.
3.
Cho, E. S., Koo, J.-M., Jiang, L., Prashar, R. S., Kim, M. S., Santiago, J. G., Kenny, T. W., and Goodson, K. E., 2003, “Experimental Study on Two-Phase Heat Transfer in Microchannel Heat Sinks with Hotspots,” Proceedings of 19th Semi-Therm Symposium, IEEE, Piscataway, NJ, pp. 242–246.
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
EDL-2
, pp.
126
129
.
5.
Hall
,
D. D.
, and
Mudawar
,
I.
,
2000
, “
Critical Heat Flux (CHF) for Water in Tubes-II, Subcooled CHF Correlations
,”
Int. J. Heat Mass Transfer
,
43
, pp.
2605
2640
.
6.
Bowring
,
R. W.
1972
, “
A Simple but Accurate Round Tube Uniform Heat Flux Dryout Correlation Over the Pressure Range 0.7-17MN/m2 (100–2500 psia)
,”
Report No. AEEW-R789
,
Winfreth, UK.
7.
Vandervort
,
C. L.
,
Bergles
,
A. E.
, and
Jensen
,
M. K.
,
1994
, “
An Experimental Study of Critical Heat Flux in Very High Heat Flux Subcooled Boiling
,”
Int. J. Heat Mass Transfer
,
37
, Suppl. 1, pp.
161
173
.
8.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer
,
123
, pp.
1071
1079
.
9.
Kandlikar
,
S. G.
,
2004
, “
Heat Transfer Mechanisms During Flow Boiling in Microchannels
,”
ASME J. Heat Transfer
,
126
, pp.
8
16
.
10.
Bergles. A. E., 1992, “Elements of Boiling Heat Transfer,” in Boiling Heat Transfer—Modern Developments and Advances, pp. 389–445, Elsevier Science Publishers, Amsterdam, The Netherlands.
11.
Bowers
,
M. B.
, and
Mudawar
,
I.
,
1994
, “
High Flux Boiling in Low Flow Rate, Low Pressure Drop Mini-Channel and Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
37
, pp.
321
332
.
12.
Jiang
,
L.
,
Wong
,
M.
, and
Zohar
,
Y.
,
1999
, “
Phase Change in MicroChannel Heat Sinks with Integrated Temperature Sensors
,”
J. Microelectromech. Syst.
,
8
, pp.
358
365
.
13.
Zhang, L., Wang, E. N., and Koo, J.-M., 2002, “Enhanced Nucleate Boiling in Microchannels,” Proceedings of the 5th IEEE Conference on MEMS, IEEE, Piscataway, NJ, pp. 89–92.
14.
Ayub
,
Z. H.
, and
Bergles
,
A. E.
,
1987
, “
Pool Boiling from GEWA Surfaces in Water and R-113
,”
Waerme- Stoffuebertrag.
,
21
, pp.
209
219
.
15.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Prediction and Measurement of Incipient Boiling Heat Flux in Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3933
3945
.
16.
Boyd
,
R. D.
Sr.
,
Cofie
,
P.
,
Li
,
Q.-Y.
, and
Ekhlassi
,
A. A.
,
2002
, “
A New Facility for Measurement of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux for PFCs
,”
Fusion Sci. Technol.
,
41
, pp.
1
12
.
17.
Boyd
,
R. D.
Sr.
,
Cofie
,
P.
, and
Ekhlassi
,
A.
,
2002
, “
Conjugate Heat Transfer Measurements in a Non-Uniformly Heated Circular Flow Channel Under Flow Boiling Conditions
,”
Int. J. Heat Mass Transfer
,
45
, pp.
1605
1613
.
18.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Flow Boiling Heat Transfer in Two-Phase Micro-Channel Heat Sinks-II. Annular Two-Phase Flow Model
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2773
2784
.
19.
Koo, J.-M., Jiang, L., Zhang, L., Zhou, P., Banerjee, S. S., Kenny, T. W., Santiago, J. G., and Goodson, K. E., 2001, “Modeling of Two-Phase Microchannel Heat Sinks for VLSI Chips,” Proc. 4th IEEE Conference on MEMS, IEEE, Piscataway, NJ, pp. 422–426.
20.
Jiang. L., Koo, J.-M., Zeng, S., Mikkelsen, J. C., Zhang, L., Zhou, P., Sabtiago, J. G., Kenny, T. W., and Goodson, K. E., 2001. “Two-Phase Microchannel Heat Sinks for an Electrokinetic VLSI Chip Cooling System,” in Proc. 17th IEEE Semi-Therm Symposium, IEEE, Piscataway, NJ, pp. 153–157.
21.
Tabatabai
,
A.
, and
Faghri
,
A.
,
2001
, “
A New Two-Phase Flow Map and Transition Boundary Accounting for Surface Tension Effects in Horizontal Miniature and Micro Tubes
,”
ASME J. Heat Transfer
,
123
, pp.
958
968
.
22.
Kandlikar
,
S. G.
,
2002
, “
Two-Phase Flow Patterns, Pressure Drop, and Heat Transfer during Boiling in Minichannel Flow Passages of Compact Evaporators
,”
Heat Transfer Eng.
,
23
(
1
), pp.
5
23
.
23.
Hetsroni
,
G.
,
Moysak
,
A.
,
Segal
,
Z.
, and
Ziskind
,
G.
,
2001
, “
A Uniform Temperature Heat Sink for Cooling of Electronic Devices
,”
Int. J. Heat Mass Transfer
,
45
, pp.
3275
3286
.
24.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Visualization and Measurements of Periodic Boiling in Silicon Microchannels
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2603
2614
.
25.
Mukherjee, S., and Mudawar, I., 2002, “Smart, Low-Cost, Pumpless Loop for Micro-Channel Electronic Cooling Using Flat and Enhanced Surfaces,” Proc. ITherm, 2002, IEEE, Piscataway, NJ, pp. 360–370.
26.
Qu
,
W.
, and
Mudawar
,
I.
,
2004
, “
Measurement and Correlation of Critical Heat Flux in Two-Phase Micro-Channel Hat Sinks
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2045
2059
.
27.
Qu
,
W.
, and
Mudawar
,
I.
,
2003
, “
Measurement and Prediction of Pressure Drop in Two-Phase Micro-Channel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
46
, pp.
2737
275
.
28.
Maulbetsch, J. S., and Griffith, P., 1966, “A Study of System Induced Instabilities in Forced Convection Flows with Subcooled Boiling,” Proc. 3rd Int. Heat Transfer Conf., III, AIChE, New York, pp. 247–257.
29.
Daleas, R. S., and Bergles, A. E., 1965, “Effects of Upstream Compressibility on Subcooled Critical Heat Flux,” ASME Paper No. 65-HT 67, ASME, New York.
30.
Boure
,
J. A.
,
Bergles
,
A. E.
, and
Tong
,
L. S.
,
1973
, “
Review of Two-Phase Flow Instability
,”
Nucl. Eng. Des.
,
25
, pp.
165
192
.
31.
Thorsen
,
T.
,
Maerkl
,
S. J.
, and
Quake
,
S. R.
,
2002
, “
Microfluidic Large-Scale Integration
,”
Science
,
298
, pp.
580
584
.
32.
Kandlikar, S. G., and Grande, W. J., 2004, “Evaluation of Single Phase Flow in Microchannels for High Flux Chip Cooling—Thermohydraulic Performance Enhancement and Fabrication Technology.” Proc. 2nd Int. Conf. Microchannels and Minichannels, June 17–19, 2004, Rochester, NY, ASME, New York.
33.
Pabisz
,
R. A.
, and
Bergles
,
A. E.
,
1997
, “
Using Pressure Drop to Predict the Critical Heat Flux in Multiple Tube, Subcooled Boiling Systems
,”
Exp. Heat Transfer
,
2
, pp.
851
858
, Edizioni ETS, Pisa, Italy.
You do not currently have access to this content.