This paper traces the evolution of enhanced boiling surfaces. Early work was highly empirical and done in industrial research. The 1968 Milton patent [“Heat Exchange System,” U.S. Patent 3,696,861] described the first porous coated surface, and the 1972 Webb patent [“Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient,” U.S. Patent 3,521,708] described a “structured” tube surface geometry. The first fundamental understanding of the “pore-and-tunnel” geometry was published by Nakayama in 1980 [Nakayama, W., Daikoku, T., Kuwahara, H., and Nakajima, T. 1980, “Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part I: Experimental Investigation,” J. Heat Transfer, 102, pp. 445–450]. Webb and Chien’s flow visualization allowed observation of the evaporation in the subsurface tunnels [Chien, L.-H., and Webb, R. L., 1998, “Visualization of Pool Boiling on Enhanced Surfaces,” Exp. Fluid Thermal Sci., 16b, pp. 332–341]. They also performed an experimental parametric study that defines the effect of pore diameter and pitch on the boiling performance. The progression of work on analytical boiling models is also reviewed.

1.
Jakob, M., 1949, Heat Transfer, John Wiley & Sons, New York, pp. 636–638.
2.
Berenson
,
P. J.
,
1962
, “
Experiments on Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
5
, pp.
985
999
.
3.
Corty
,
C.
, and
Foust
,
A. S.
,
1955
, “
Surface Variables in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
51
, No.
17
, pp.
1
12
.
4.
Kurihari
,
H. M.
, and
Myers
,
J. E.
,
1960
, “
Effects of Superheat and Roughness on the Boiling Coefficients
,”
AIChE J.
,
6
, pp.
83
91
.
5.
Bankoff
,
S. G.
,
1959
, “
Entrapment of Gas in the Spreading of a Liquid Over a Rough Surface
,”
AIChE J.
,
4
, pp.
24
26
.
6.
Clark
,
H. B.
,
Strenge
,
P. H.
, and
Westwater
,
J. W.
,
1959
, “
Active Sites for Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
55
, No.
29
, pp.
103
110
.
7.
Griffith
,
P.
, and
Wallis
,
J. D.
,
1960
, “
The Role of Surface Conditions in Nucleate Boiling
,”
Chem. Eng. Prog., Symp. Ser.
,
56
, No.
49
, pp.
49
63
.
8.
Benjamin, J. E., and Westwater, J. W., 1961, “Bubble Growth in Nucleate Boiling of a Binary Mixture,” International Developments in Heat Transfer, ASME, New York, pp. 212–218.
9.
Marto
,
P. J.
, and
Rohsenow
,
W. M.
,
1966
, “
Effects of Surface Conditions on Nucleate Pool Boiling of Sodium
,”
J. Heat Transfer
,
88
, pp.
196
204
.
10.
Webb
,
R. L.
,
1981
, “
The Evolution of Enhanced Surface Geometries for Nucleate Boiling
,”
Heat Transfer Eng.
,
2
, pp.
46
69
.
11.
Milton, R. M., 1968, “Heat Exchange System,” U.S. Patent 3,384,154.
12.
Milton, R. M., 1970, “Heat Exchange System,” U.S. Patent 3,523,577.
13.
Milton, R. M., 1971, “Heat Exchange System With Porous Boiling Layer,” U.S. Patent 3,587,730.
14.
Gottzmann
,
C. F.
,
O’Neill
,
P. S.
, and
Minton
,
P. E.
,
1973
, “
High Efficiency Heat Exchangers
,”
Chem. Eng. Prog.
,
69
(
7
), pp.
69
75
.
15.
Kun, L. C., and Czikk, A. M., 1969, “Surface for Boiling Liquids,” U.S. Patent 3,454,081 (Reissued August 21, 1979 Re. 30,077).
16.
Webb, R. L., 1970, “Heat Transfer Surface Which Promotes Nucleate Boiling,” U.S. Patent 3,521,708.
17.
Webb, R. L., 1972, “Heat Transfer Surface Having a High Boiling Heat Transfer Coefficient,” U.S. Patent 3,696,861, assigned to The Trane Co.
18.
Fujie, K., Nakayama, W., Kuwahara, H., and Kakizakci, K., 1977, “Heat Transfer Wall for Boiling Liquids,” U.S. Patent 4,060,125.
19.
Saier, M., Kastner, H. W., and Klockler, R., 1979, “Y- and T-Finned Tubes and Methods and Apparatus for Their Making,” U.S. Patent 4,179,911.
20.
Fujikake, J., 1980, “Heat Transfer Tube for Use in Boiling Type Heat Exchangers and Method of Producing the Same,” U.S. Patent 4,216,826.
21.
Thors, P., Clevinger, N. R., Campbell, B. J., and Tyler, J. T., 1997, “Heat Transfer Tubes and Methods of Fabrication Thereof,” U.S. Patent 5,697,430.
22.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part I: Experimental Investigation
,”
J. Heat Transfer
,
102
, pp.
445
450
.
23.
Nakayama
,
W.
,
Daikoku
,
T.
, and
Nakajima
,
T.
,
1982
, “
Effects of Pore Diameters and System Pressure on Saturated Pool Nucleate Boiling Heat Transfer From Porous Surfaces
,”
J. Heat Transfer
,
104
, pp.
286
291
.
24.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
Visualization of Pool Boiling on Enhanced Surfaces
,”
Exp. Fluid Thermal Science
,
16
, pp.
332
341
.
25.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
Parametric Studies of Nucleate Pool Boiling on Structured Surfaces, Part I: Effect of Tunnel Dimensions and Comparison of R-11
,”
J. Heat Transfer
,
120
, pp.
1042
1048
.
26.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
Parametric Studies of Nucleate Pool Boiling on Structured Surfaces, Part II: Effect of Pore Diameter and Pore Pitch
,”
J. Heat Transfer
,
120
, pp.
1048
1054
.
27.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
2001
, “
Effect of Geometry and Fluid Property Parameters on Performance of Tunnel and Pore Enhanced Boiling Surfaces
,”
J. Enhanced Heat Transfer
,
8
, pp.
329
340
.
28.
Chien
,
L.-H.
, and
Chang
,
C.-C.
,
2003
, “
Enhancement of Pool Boiling on Structured Surfaces Using HFC-4310 and Water
,”
J. Enhanced Heat Transfer
,
11
, pp.
23
44
.
29.
Kim
,
N.-H.
, and
Choi
,
K.-K.
,
2001
, “
Nucleate Pool Boiling on Structured Enhanced Tubes Having Pores With Connecting Gaps
,”
Int. J. Heat Mass Transfer
,
44
, pp.
17
28
.
30.
Nakayama
,
W.
,
Daikoku
,
T.
,
Kuwahara
,
H.
, and
Nakajima
,
T.
,
1980
, “
Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces Part II: Analytical Modeling
,”
J. Heat Transfer
,
102
, pp.
451
456
.
31.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
A Nucleate Boiling Model for Structured Enhanced Surfaces
,”
Int. J. Heat Mass Transfer
,
41
, pp.
2183
2195
.
32.
Haider
,
S. I.
, and
Webb
,
R. L.
,
1997
, “
A Transient Micro-Convection Model of Nucleate Pool
,”
Int. J. Heat Mass Transfer
,
40
, pp.
3675
3688
.
33.
Mikic
,
B. B.
, and
Rohsenow
,
W. M.
,
1969
, “
A New Correlation of Pool-Boiling Data Including the Effect of Heating Surface Characteristics
,”
J. Heat Transfer
,
91
, pp.
245
250
.
34.
Chien
,
L.-H.
, and
Webb
,
R. L.
,
1998
, “
Measurement of Bubble Dynamics on an Enhanced Boiling Surface
,”
Exp. Fluid Thermal Science
,
16
, pp.
177
186
.
35.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W. B.
,
2003
, “
Semi-Analytical Model for Boiling From Enhanced Structures
,”
Int. J. Heat Mass Transfer
,
46
, pp.
4257
4269
.
36.
Jiang
,
Y. Y.
,
Wang
,
W. C.
,
Wang
,
D.
, and
Wang
,
B. X.
,
2001
, “
Boiling Heat Transfer on Machined Porous Surfaces With Structural Optimization
,”
Int. J. Heat Mass Transfer
,
44
, pp.
443
456
.
37.
Khrustalev
,
D.
, and
Faghri
,
A.
,
1994
, “
Thermal Analysis of a Micro Heat Pipe
,”
J. Heat Transfer
,
116
, pp.
189
198
.
You do not currently have access to this content.