Recent literature suggests that the droplets that form in horizontal-tube, falling-film absorbers play a major role in the absorption process. The performance of such absorbers is critical to the performance of many absorption heat pump systems. The simulation of droplets of aqueous Lithium Bromide pendant from horizontal tubes was performed by numerically solving the equations of motion on a fixed three-dimensional (3D) grid. The so-called volume of fluid method was used to handle the interface between the liquid and vapor phase. Results are compared with simplified axisymmetric models and with high speed video taken during flow visualization experiments. The results show that simplified axisymmetric models do not satisfactorily represent the evolution of the droplets under horizontal tubes, and that the 3D numerical model appears to accurately match the important characteristics of droplet formation, detachment, and impact observed in the experiments.

1.
ASHRAE, 1997, 1997 ASHRAE Handbook—Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
2.
Nomura, T., Nishimura, N., Wei, S., Yamaguchi, S., and Kawakami, R., 1993, “Heat and Mass Transfer Mechanism in the Absorber of Water/LiBr Conventional Absorption Refrigerator: Experimental Examination by Visualized Model,” International Absorption Heat Pump Conference, New Orleans, Louisiana, Vol. AES-31, The Advanced Energy Systems Division, ASME, pp. 203–208.
3.
Kirby
,
M. J.
, and
Perez-Blanco
,
H.
,
1994
, “
A Design Model for Horizontal Tube Water/Lithium Bromide Absorbers,” ,
ASME Heat Pump and Refrigeration Systems Design, Analysis and Applications
, Conference proceedings, 32, ASME New York, pp.
1
10
.
4.
Jeong
,
S.
, and
Garimella
,
S.
,
2002
, “
Falling-Film and Droplet Mode Heat and Mass Transfer in a Horizontal Tube LiBr/Water Absorber
,”
Int. J. Heat Mass Transfer
,
45
(
7
), pp.
1445
1458
.
5.
Killion
,
J. D.
, and
Garimella
,
S.
,
2003
, “
Gravity-Driven Flow of Liquid Films and Droplets in Horizontal Tube Banks
,”
Int. J. Refrig.
,
26
(
5
), pp.
516
526
.
6.
Atchley, J. A., Perez-Blanco, H., Kirby, M. J., and Miller, W. A., 1998, “An Experimental and Analytical Study of Advanced Surfaces for Absorption Chiller Absorbers,” Gas Research Institute Report GRI.
7.
Andberg, J. W., and Vliet, G. C., 1987, “Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes,” Second ASME-JSME Thermal Engineering Joint Conference, Honolulu, Hawaii, Vol. 2, pp. 533–541.
8.
Choudhury, S. K., Nishiguchi, A., Hisajima, D., Fukushima, T., Ohuchi, T., and Sakaguchi, S., 1993, “Absorption of Vapors Into Liquid Films Flowing Over Cooled Horizontal Tubes,” Proceedings of the 1993 Annual Meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., 27–30 June, 1993, Denver, CO ASHRAE, Atlanta, Vol. 99, pp. 81–89.
9.
Conlisk
,
A. T.
, and
Mao
,
J.
,
1996
, “
Nonisothermal Absorption on a Horizontal Cylindrical Tube–1. The Film Flow
,”
Chem. Eng. Sci.
,
51
(
8
), pp.
1275
1285
.
10.
Lu, Z., Li, D., Li, S., and Yu-Chi, B., 1996, “A Semi-Empirical Model of the Falling Film Absorption Outside Horizontal Tubes,” International Ab-Sorption Heat Pump Conference, Vol. 2, pp. 473–480.
11.
Killion
,
J. D.
, and
Garimella
,
S.
,
2001
, “
A Critical Review of Models of Coupled Heat and Mass Transfer in Falling-Film Absorption
,”
Int. J. Refrig.
,
24
(
8
), pp.
755
797
.
12.
Killion
,
J. D.
, and
Garimella
,
S.
,
2003
, “
Pendant Droplet Dynamics for Absorption on Horizontal Tube Banks
,”
Int. J. Heat Mass Transfer
, (submitted).
13.
Tang, J., Lu, Z., Yu-chi, B., and Lin, S., 1991, “Droplet Spacing of Falling Film Flow on Horizontal Tube Bundles,” Proceedings of the XVIIIth International Congress of Refrigeration, Montreal, Vol. II, pp. 474–478.
14.
Limat
,
L.
,
Jenffer
,
P.
,
Dagens
,
B.
,
Touron
,
E.
,
Fermigier
,
M.
, and
Wesfreid
,
J. E.
,
1992
, “
Gravitational Instabilities of Thin Liquid Layers. Dynamics of Pattern Selection
,”
Physica D
,
61
(1–4), p.
166
166
.
15.
Giorgiutti
,
F.
,
Bleton
,
A.
,
Limat
,
L.
, and
Wesfreid
,
J. E.
,
1995
, “
Dynamics of a One-Dimensional Array of Liquid Columns
,”
Phys. Rev. Lett.
,
74
(
4
), p.
538
538
.
16.
de Bruyn
,
J. R.
,
1997
, “
Crossover Between Surface Tension and Gravity-Driven Instabilities of a Thin Fluid Layer on a Horizontal Cylinder
,”
Phys. Fluids
,
9
(
6
), p.
1599
1599
.
17.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1996
, “
The Intertube Falling Film: Part 1—Flow Characteristics, Mode Transitions, and Hysteresis
,”
J. Heat Transfer
,
118
(
3
), pp.
616
625
.
18.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1998
, “
Departure-Site Spacing for Liquid Droplets and Jets Falling Between Horizontal Circular Tubes
,”
Exp. Therm. Fluid Sci.
,
16
(
4
), pp.
322
331
.
19.
Hu
,
X.
, and
Jacobi
,
A. M.
,
1996
, “
The Intertube Falling Film: Part 2—Mode Effects on Sensible Heat Transfer to a Falling Liquid Film
,”
J. Heat Transfer
,
118
(
3
), pp.
626
633
.
20.
Cavallini, A., Doretti, L., Fornasieri, E., and Zilio, C., 2001, “Heat and Mass Transfer and Flow Patterns During Absorption of Steam in LiBr+Water Falling Film,” IIF-IIR-Commission B1, Paderborn, Germany.
21.
Roques
,
J. F.
,
Dupont
,
V.
, and
Thome
,
J. R.
,
2002
, “
Falling Film Transitions on Plain and Enhanced Tubes
,”
J. Heat Transfer
,
124
(
3
), pp.
491
499
.
22.
Roques
,
J.-F.
, and
Thome
,
J. R.
,
2003
, “
Falling Film Transitions Between Droplet, Column, and Sheet Flow Modes on a Vertical Array of Horizontal 19 FPI and 40 FPI Low-Finned Tubes
,”
Curr. Opin. Pediatr.
,
24
(
6
), pp.
40
45
.
23.
Eggers
,
J.
,
1997
, “
Nonlinear Dynamics and Breakup of Free-Surface Flows
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
865
929
.
24.
Mariotte, E., 1686, Traite’ Du Mouvement Des Eaux Et Des Autres Corps Fluids, E. Michallet, Paris.
25.
Savart
,
F.
,
1833
,
Ann. Chim. (Paris)
,
53
, p.
337
337
(with additional plates in Vol. 54).
26.
Plateau
,
J. P.
,
1849
, “
Recherches Expe´rimentales Et The´orique Sur Les Figures D’e´quilibre D’une Masse Liquide Sans Pesanteur
,”
Me´moires de l’Acade´mie Royale des Sciences, des Lettres et des Beaux-Arts de Belgique
,
23
, pp.
1
55
.
27.
Rayleigh
,
L.
, and
Rayleigh
,
J. W. S.
,
1879
,
Proc. London Math. Soc.
,
10
, p.
4
4
.
28.
Rayleigh
,
L.
, and
Rayleigh
,
J. W. S.
,
1879
,
Proc. R. Soc. London, Ser. A
,
29
, p.
94
94
.
29.
Worthington, A. M., 1908, A Study of Splashes, Longmans Green and Co., London, pp. xii, 129, 11.
30.
Kumar
,
R.
, and
Kuloor
,
N. R.
,
1970
, “
The Formation of Bubbles and Drops
,”
Adv. Chem. Eng.
,
8
, pp.
255
368
.
31.
Clift, R., Grace, J. R., and Weber, M. E., 1978, Bubbles, Drops, and Particles, Academic Press, New York, p. 380.
32.
Frohn, A., and Roth, N., 2000, Dynamics of Droplets, in Experimental Fluid Mechanics, Springer, New York, p. 292.
33.
Scheele
,
G. F.
, and
Meister
,
B. J.
,
1968
, “
Drop Formation at Low Velocities in Liquid-Liquid Systems: Part 1. Prediction of Drop Volume
,”
AIChE J.
,
14
(
1
), pp.
9
19
.
34.
Heertjes
,
P. M.
,
de Nie
,
L. H.
, and
de Vries
,
H. J.
,
1971
, “
Drop Formation in Liquid-Liquid Systems-I Prediction of Drop Volumes at Moderate Speed of Formation
,”
Chem. Eng. Sci.
,
26
, pp.
441
449
.
35.
Middleman, S., 1995, Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, Academic Press, San Diego, p. 299.
36.
Bogy
,
D. B.
,
1979
, “
Drop Formation in a Circular Liquid Jet
,”
Annu. Rev. Fluid Mech.
,
11
, pp.
207
228
.
37.
Yarin, A. L., 1993, Free Liquid Jets and Films: Hydrodynamics and Rheology, Longman, Scientific & Technical, New York.
38.
Worthington
,
A. M.
,
1881
, “
On Pendent Drops
,”
Proc. R. Soc. London
,
32
, pp.
362
377
.
39.
Pitts
,
E.
,
1974
, “
The Stability of Pendant Liquid Drops. Part 2. Axial Symmetry
,”
J. Fluid Mech.
,
63
, pp.
487
508
.
40.
Peregrine
,
D. H.
,
Shoker
,
G.
, and
Symon
,
A.
,
1990
, “
The Bifurcation of Liquid Bridges
,”
J. Fluid Mech.
,
212
, pp.
25
39
.
41.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.
42.
Tropea
,
C.
, and
Marengo
,
M.
,
1999
, “
Impact of Drops on Walls and Films
,”
Multiphase Sci. Technol.
,
11
(
1
), pp.
19
36
.
43.
Prosperetti
,
A.
, and
Oguz
,
H. N.
,
1993
, “
Impact of Drops on Liquid Surfaces and the Underwater Noise of Rain
,”
Annu. Rev. Fluid Mech.
,
25
, p.
577
577
.
44.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
45.
Killion, J. D., 2003, Masters Thesis: An Investigation of Droplets and Films Falling over Horizontal Tubes, in Department of Mechanical Engineering, Iowa State University, Ames, Iowa, p. 156.
1.
Hyman
,
J. M.
,
1983
, “
Numerical Methods for Tracking Interfaces
,”
Physica D
,
12D
(1–3), pp.
396
407
;
2.
Fronts, Interfaces and Patterns, Proc of the 3rd Annu Int Conf of the Cent for Nonlinear Stud, 2–6 May, 1983.
1.
Sussman
,
M.
,
Fatemi
,
E.
,
Smereka
,
P.
, and
Osher
,
S.
,
1998
, “
Improved Level Set Method for Incompressible Two-Phase Flows
,”
Comput. Fluids
,
27
(5–6), pp.
663
680
.
2.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.
3.
Unverdi
,
S. O.
, and
Tryggvason
,
G.
,
1992
, “
A Front Tracking Method for Viscousm Incompressible Multi-Fluid Flows
,”
J. Comput. Phys.
,
100
, p.
25
25
.
4.
Unverdi, S. O., and Tryggvason, G., 1992, “Computations of Multi-Fluid Flows,” Physica D: Nonlinear Phenomena Proceedings of the 11th Annual International Conference of the Center for Nonlinear Studies, 20–24 May, 1991, 60(1–4): p. 70.
5.
Boulton-Stone
,
J. M.
,
1993
, “
Comparison of Boundary Integral Methods for Studying the Motion of a Two-Dimensional Bubble in an Infinite Fluid
,”
Comput. Methods Appl. Mech. Eng.
,
102
(
2
), pp.
213
234
.
6.
Blake, J. R., Boulton-Stone, J. M., and Tong, R. P., 1995, Boundary Integral Methods for Rising, Bursting and Collapsing Bubbles, in Boundary Element Applications in Fluid Mechanics, H. Power, ed., Computational Mechanics Publications, WIT Press, Boston, MA, pp. 31/376.
7.
Kelecy
,
F. J.
, and
Pletcher
,
R. H.
,
1997
, “
The Development of a Free Surface Capturing Approach for Multidimensional Free Surface Flows in Closed Containers
,”
J. Comput. Phys.
,
138
(
2
), p.
939
939
.
8.
Wilkes
,
E. D.
,
Phillips
,
S. D.
, and
Basaran
,
O. A.
,
1999
, “
Computational and Experimental Analysis of Drop Formation
,”
Phys. Fluids
,
11
(
12
), pp.
3577
3860
.
9.
Notz
,
P. K.
,
Chen
,
A. U.
, and
Basaran
,
O. A.
,
2001
, “
Satellite Drops: Unexpected Dynamics and Change of Scaling During Pinch-Off
,”
Phys. Fluids
,
13
(
3
), pp.
549
552
.
10.
Schulkes
,
R. M. S. M.
,
1994
, “
The Evolution and Bifurcation of a Pendant Drop
,”
J. Fluid Mech.
,
278
, pp.
83
100
.
11.
Zhang
,
D. F.
, and
Stone
,
H. A.
,
1997
, “
Drop Formation in Viscous Flows at a Vertical Capillary Tube
,”
Phys. Fluids
,
9
(
8
), pp.
2234
2242
.
12.
Oguz
,
H. N.
, and
Prosperetti
,
A.
,
1993
, “
Dynamics of Bubble Growth and Detachment From a Needle
,”
J. Fluid Mech.
,
257
, pp.
111
145
.
13.
Eggers
,
J.
, and
Dupont
,
T. F.
,
1994
, “
Drop Formation in a One-Dimensional Approximation for the Navier-Stokes Equation
,”
J. Fluid Mech.
,
262
, pp.
205
221
.
14.
Papageorgiou
,
D. T.
,
1995
, “
On the Breakup of Viscous Liquid Threads
,”
Phys. Fluids
,
7
(
7
), p.
1529
1529
.
15.
Shi
,
X. D.
,
Brenner
,
M. P.
, and
Nagel
,
S. R.
,
1994
, “
Cascade of Structure in a Drop Falling From a Faucet
,”
Science
,
265
(
5169
), p.
219
219
.
16.
Eggers
,
J.
,
1993
, “
Universal Pinching of 3D Axisymmetric Free-Surface Flow
,”
Phys. Rev. Lett.
,
71
, p.
3458
3458
.
17.
Eggers
,
J.
,
1995
, “
Theory of Drop Formation
,”
Phys. Fluids
,
7
(
5
), p.
941
941
.
18.
Brenner
,
M. P.
,
Eggers
,
J.
,
Joseph
,
K.
,
Nagel
,
S. R.
, and
Shi
,
X. D.
,
1997
, “
Breakdown of Scaling in Droplet Fission at High Reynolds Number
,”
Phys. Fluids
,
9
(
6
), p.
1573
1573
.
19.
Rider
,
W. J.
, and
Kothe
,
D. B.
,
1998
, “
Reconstructing Volume Tracking
,”
J. Comput. Phys.
,
141
(
2
), p.
112
112
.
20.
Kothe
,
D. B.
, and
Mjolsness
,
R. C.
,
1992
, “
Ripple: A New Model for Incompressible Flows With Free Surfaces
,”
AIAA J.
,
30
(
11
), pp.
2694
2700
.
21.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
22.
Brackbill, J. U., and Kothe, D. B., 1996, “Dynamical Modeling of Surface Tension,” Proceedings of the 1996 3rd Microgravity Fluid Physics Conference, 13–15 July, 1996, Cleveland, OH, NASA, pp. 693–698.
23.
Kelkar, K. M., and Patankar, S. V., 1994, “Numerical Method for the Prediction of Two-Fluid Flows in Domains With Moving Boundaries,” Proceedings of the 1994 ASME Fluids Engineering Division Summer Meeting. Part 7 (of 18), 19–23 June, 1994, Lake Tahoe, NV, Vol. 185, ASME, pp. 169–176.
24.
Gueyffier
,
D.
,
Li
,
J.
,
Nadim
,
A.
,
Scardovelli
,
R.
, and
Zaleski
,
S.
,
1999
, “
Volume-of-Fluid Interface Tracking With Smoothed Surface Stress Methods for Three-Dimensional Flows
,”
J. Comput. Phys.
,
152
(
2
), pp.
423
456
.
25.
Harvie
,
D. J. E.
, and
Fletcher
,
D. F.
,
2001
, “
A New Volume of Fluid Advection Algorithm: The Defined Donating Region Scheme
,”
Int. J. Numer. Methods Fluids
,
35
(
2
), pp.
151
172
.
26.
Rudman
,
M.
,
1997
, “
Volume-Tracking Methods for Interfacial Flow Calculations
,”
Int. J. Numer. Methods Fluids
,
24
(
7
), pp.
671
691
.
27.
Rudman
,
M.
,
1998
, “
Volume-Tracking Method for Incompressible Multifluid Flows With Large Density Variations
,”
Int. J. Numer. Methods Fluids
,
28
(
2
), pp.
357
378
.
28.
Zhang
,
X.
,
1999
, “
Dynamics of Growth and Breakup of Viscous Pendant Drops Into Air
,”
J. Colloid Interface Sci.
,
212
(
1
), pp.
107
122
.
29.
Richards
,
J. R.
,
Beris
,
A. N.
, and
Lenhoff
,
A. M.
,
1995
, “
Drop Formation in Liquid-Liquid Systems Before and After Jetting
,”
Phys. Fluids
,
7
(
11
), pp.
2617
2630
.
30.
Richards, J. R., 1994, Doctoral Thesis: Fluid Mechanics of Liquid-Liquid Systems, in Chemical Engineering, University of Delaware, p. 241.
31.
Rieber
,
M.
, and
Frohn
,
A.
,
1999
, “
Numerical Study on the Mechanism of Splashing
,”
Int. J. Heat Fluid Flow
,
20
(
5
), pp.
455
461
.
32.
Gueyffier, D., 2000, Doctoral Dissertation: Etude De L’impact De Gouttes Sur Un Film Liquide Mince. De´veloppement De La Corrolle Et Formation De Projections (in French), in Me´canique, Universite´ Pierre et Marie Curie, Paris 6, p. 177.
33.
Zhang
,
X.
,
1999
, “
Dynamics of Drop Formation in Viscous Flows
,”
Chem. Eng. Sci.
,
54
, pp.
1759
1774
.
34.
Chen
,
L.
,
Garimella
,
S. V.
,
Reizes
,
J. A.
, and
Leonardi
,
E.
,
1997
, “
Motion of Interacting Gas Bubbles in a Viscous Liquid Including Wall Effects and Evaporation
,”
Numer. Heat Transfer, Part A
,
31
(
6
), pp.
629
654
.
35.
Yoshikawa, T., Murai, Y., and Yamamoto, F., 1997, “Numerical and Experimental Investigations of Bursting Bubble on Free Surface,” Proceedings of the 1997 ASME Fluids Engineering Division Summer Meeting, FEDSM’97. Part 13 (of 24), 22–26 June, 1997, Vancouver, Can, Vol. 13, ASME, New York, NY, p. 6.
36.
Suzuki, T., Mitachi, K., and Fukuda, A., 1998, “Numerical Analysis of Free Surface Motion Ensuing Burst of Bubble Dome,” Proceedings of the 1998 ASME/JSME Joint Pressure Vessels and Piping Conference, 26–30 July, 1998, San Diego, CA, Vol. 377, ASME, Fairfield, NJ, pp. 235–241.
37.
Fluent Inc., 2003, Fluent, Lebanon, NH.
38.
Keenan, J. H., Chao, J., and Kaye, J., 1983, Gas Tables International Version Thermodynamic Properties of Air Products of Combustion and Component Gases Compressible Flow Functions, Including Those of Ascher H. Shapiro and Gilbert M. Edelman, Wiley, New York, pp. xvi, 211.
39.
Lee
,
R. J.
,
DiGuilio
,
R. M.
,
Jeter
,
S. M.
, and
Teja
,
A. S.
,
1990
, “
Properties of Lithium Bromide-Water Solutions at High Temperatures and Concentrations—Part II: Density and Viscosity
,”
ASHRAE Trans.
,
86
, pp.
220
226
.
40.
Klein, S. A., and Alvarado, F. L., 2000, EES-Engineering Equation Solver, F-Chart Software, www.fchart.com.
41.
Haar, L., Gallagher, J. S., Kell, G. S., and National Standard Reference Data System (U.S.), 1984, Nbs/Nrc Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, Hemisphere Washington, D.C., pp. xii, 320.
42.
Kulankara
,
S.
, and
Herold
,
K. E.
,
2002
, “
Surface Tension of Aqueous Lithium Bromide With Heat/Mass Transfer Enhancement Additives: The Effect of Additive Vapor Transport
,”
Int. J. Refrig.
,
25
(
3
), pp.
383
389
.
43.
Aris, R., 1962, Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Prentice-Hall International Series in the Physical and Chemical Engineering Sciences, Dover 1989 (Prentice-Hall), Englewood Cliffs, N.J., p. 286.
44.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
45.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 2002, Transport Phenomena, Wiley, New York, pp. xii, 895.
46.
Tannehill, J. C., Anderson, D. A., and Pletcher, R. H., 1997, Computational Fluid Mechanics and Heat Transfer, Series in Computational and Physical Processes in Mechanics and Thermal Sciences, Taylor & Francis, Washington, D.C., p. 792.
47.
Issa
,
R. I.
,
1986
, “
Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting
,”
J. Comput. Phys.
,
62
(
1
), pp.
40
65
.
48.
Youngs, D. L., 1982, “Time-Dependent Multi-Material Flow With Large Fluid Distortion,” in Numerical Methods for Fluid Dynamics, K. W. Morton and M. J. Baines, eds., Academic Press, New York.
You do not currently have access to this content.