A systematic numerical study has been conducted of the mixed convection flow in a novel impinging jet chemical vapor deposition (CVD) reactor for deposition of thin films at atmospheric pressure. The geometry resembles that of a pancake reactor but the inflow gases enter through a small nozzle to provide high inlet momentum. A finite-volume-based computational procedure is used to integrate the governing flow, energy, and scalar transport equations with high accuracy. The effects of the temperature dependent properties are fully accounted for. The effects of operating pressure, wafer rotation rate, and inlet flow rate of the carrier gas are investigated. The main benefit of the new geometry is the suppression of the buoyancy-driven flow even at atmospheric pressures due to the lower mixed convection parameter. We show that the new geometry can produce thin films of high radial uniformity and also with high growth rate. Comparisons are also made with a conventional stagnation flow reactor for which it is shown that beyond a moderate pressure (∼0.1 atm), the flow is dominated by natural convection, and the reactor is unsuitable for practical use.

1.
Salinger
,
A. G.
,
Shadid
,
J. N.
,
Hutchinson
,
S. A.
,
Hennigan
,
G. L.
,
Devine
,
K. D.
, and
Moffat
,
H. K.
,
1999
, “
Analysis of Gallium Arsenide Deposition in a Horizontal Chemical Vapor Deposition Reactor Using Massively Parallel Computations
,”
J. Cryst. Growth
,
203
, pp.
516
533
.
2.
Ern
,
A.
,
Giovangigli
,
V.
, and
Smooke
,
M. D.
,
1997
, “
Detailed Modeling of Three-Dimensional Chemical Vapor Deposition
,”
J. Cryst. Growth
,
180
, pp.
670
679
.
3.
Cho
,
W. K.
, and
Choi
,
D. H.
,
2000
, “
Optimization of a Horizontal MOCVD Reactor for Uniform Epitaxial Layer Growth
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1851
1858
.
4.
De Paola
,
E.
, and
Duverneuil
,
P.
,
1998
, “
Simulation of Silicon Deposition From SiHCl3 in a CVD Barrel Reactor at Atmospheric Pressure
,”
Comput. Chem. Eng.
,
22
, (Suppl)(May), pp.
S683–S686
S683–S686
.
5.
Theodoropoulos
,
C.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
, and
Han
,
J.
,
2000
, “
Design of Gas Inlets for the Growth of Gallium Nitride by Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
217
, pp.
65
81
.
6.
Pawlowski
,
R. P.
,
Theodoropoulos
,
C.
,
Salinger
,
A. G.
,
Mountziaris
,
T. J.
,
Moffat
,
H. K.
,
Shadid
,
J. N.
, and
Thrush
,
E. J.
,
2000
, “
Fundamental Models of the Metalorganic Vapor-Phase Epitaxy of Gallium Nitride and Their use in Reactor Design
,”
J. Cryst. Growth
,
221
, pp.
622
628
.
7.
Cho
,
W. K.
,
Choi
,
D. H.
, and
Kim
,
M.-U.
,
1999
, “
Optimization of the Inlet Velocity Profile for Uniform Epitaxial Growth in a Vertical Metalorganic Chemical Vapor Deposition Reactor
,”
Int. J. Heat Mass Transfer
,
42
, pp.
4143
4152
.
8.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
9.
Fotiadis
,
D. I.
,
Kieda
,
S.
, and
Jensen
,
K. F.
,
1990
, “
Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
102
, pp.
441
470
.
10.
Wang
,
C. A.
,
Patnaik
,
S.
,
Caunt
,
J. W.
, and
Brown
,
R. A.
,
1988
, “
Growth Characteristics of a Vertical Rotating-Disk OMVPE Reactor
,”
J. Cryst. Growth
,
93
, pp.
228
234
.
11.
Fotiadis
,
D. I.
,
Kremer
,
A. M.
,
McKenna
,
D. R.
, and
Jensen
,
K. F.
,
1987
, “
Complex Flow Phenomena in Vertical MOVCD Reactors: Effects on Deposition Uniformity and Interface Abruptness
,”
J. Cryst. Growth
,
85
, pp.
154
164
.
12.
Houtman
,
C.
,
Graves
,
D. B.
, and
Jensen
,
K. F.
,
1987
, “
CVD in Stagnation Point Flow
,”
J. Electrochem. Soc.
,
133
, pp.
963
975
.
13.
Coltrin
,
M. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1987
, “
A Mathematical Model of Silicon Chemical Vapor Deposition
,”
J. Electrochem. Soc.
,
133
, p.
1206
1206
.
14.
Evans
,
G. H.
, and
Greif
,
R.
,
1987
, “
A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
109
, pp.
928
935
.
15.
Evans
,
G. H.
, and
Greif
,
R.
,
1987
, “
Effects of Boundary Conditions on the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
Numer. Heat Transfer
,
12
, pp.
243
252
.
16.
Patnaik
,
S.
,
Brown
,
R. A.
, and
Wang
,
C. A.
,
1989
, “
Hydrodynamic Dispersion in Rotating-Disk OMVPE Reactors: Numerical Simulation and Experimental Measurements
,”
J. Cryst. Growth
,
96
, pp.
153
174
.
17.
Dilawari
,
A. H.
, and
Szekely
,
J.
,
1991
, “
A Mathematical Representation of a Modified Stagnation Flow Reactor for MOCVD Applications
,”
J. Cryst. Growth
,
108
, pp.
491
498
.
18.
Cho
,
W. K.
,
Choi
,
D. H.
, and
Kim
,
M.-U.
,
1999
, “
Optimization of the Inlet Concentration Profile for Uniform Deposition in a Cylindrical Chemical Vapor Deposition Chamber
,”
Int. J. Heat Mass Transfer
,
42
, pp.
1141
1146
.
19.
van Santen
,
H.
,
Kleijn
,
C. R.
, and
van den Akker
,
H. E. A.
,
2001
, “
On Multiple Stability of Mixed-Convection Flows in a Chemical Vapor Deposition Reactor
,”
Int. J. Heat Mass Transfer
,
44
, pp.
659
672
.
20.
van Santen
,
H.
,
Kleijn
,
C. R.
, and
van den Akker
,
H. E. A.
,
2000
, “
On Turbulent Flows in Cold-Wall CVD Reactors
,”
J. Cryst. Growth
,
212
, pp.
299
310
.
21.
van Santen
,
H.
,
Kleijn
,
C. R.
, and
van den Akker
,
H. E. A.
,
2000
, “
Symmetry Breaking in a Stagnation-Flow CVD Reactor
,”
J. Cryst. Growth
,
212
, pp.
311
323
.
22.
van Santen
,
H.
,
Kleijn
,
C. R.
, and
van den Akker
,
H. E. A.
,
2000
, “
Mixed Convection in Radial Flow Between Horizontal Plates—I. Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1523
1535
.
23.
van Santen
,
H.
,
Kleijn
,
C. R.
, and
van den Akker
,
H. E. A.
,
2000
, “
Mixed Convection in Radial Flow Between Horizontal Plates—II. Experiments
,”
Int. J. Heat Mass Transfer
,
43
, pp.
1537
1546
.
24.
Gadgil
,
P. N.
,
1993
, “
Optimization of a Stagnation Point Flow Reactor Design for Metalorganic Chemical Vapor Deposition by Flow Visualization
,”
J. Cryst. Growth
,
134
, pp.
302
312
.
25.
Mathews
,
A. G.
, and
Peterson
,
J. E.
,
2000
, “
Flow Visualizations and Transient Temperature Measurements in an Axisymmetric Impinging Jet Rapid Thermal Chemical Vapor Deposition Reactor
,”
Trans. ASME, Ser. C: J. Heat Transfer
,
124
, pp.
564
570
.
26.
Najm
,
H. N.
,
Wyckoff
,
P. S.
, and
Knio
,
O. M.
,
1998
, “
A Semi-Implicit Numerical Scheme for Reacting Flow. I. Stiff Chemistry
,”
J. Comput. Phys.
,
143
, pp.
381
402
.
27.
Boersma, B. J., 1998, “Direct Simulation of a Jet Diffusion Flame,” Annual Research Briefs, Center for Turbulence Research, Stanford, CA, pp. 47–56.
28.
Database of the Thermophysical Properties of Gases Used in the Semiconductor Industry, retrieved June 7th, 2002 from http://properties.nist.gov/SemiProp/Gases/Index.html.
29.
Luo, G., 2003, “Study of Buoyancy-Induced Flows in a Prototypical CVD Reactor,” Ph.D. thesis, University of Illinois, Urbana-Champaign, IL.
30.
Snyder
,
D. W.
,
Sides
,
P. J.
, and
Ko
,
E. I.
,
1992
, “
On the Rate and Uniformity of CdTe Deposition in an Impinging Jet Reactor: Numerical Simulations
,”
J. Cryst. Growth
,
121
, pp.
631
642
.
You do not currently have access to this content.