In this study, a novel concept is investigated, according to which the traditional ribbed flow delivery systems are replaced with permeable porous fluid distributors, which circumvent a number of known performance hindering drawbacks. A thorough single-phase model, including the conservation of mass, momentum, energy, species, and electric current, using Butler-Volmer kinetics, is numerically solved in three dimensions, to investigate the impact of different flow configurations on the performance of hydrogen fuel cells. It is found that cells with porous gas distributors generate substantially higher current densities and therefore are more advantageous with respect to mass transfer. Another advantage of porous flow distributors is the potential for higher power densities and reduced stack weight.

1.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1991
, “
Mathematical Model of a Gas-Diffusion Electrode Bonded to a Polymer Electrolyte
,”
AIChE J.
,
37
(
8
), pp.
1151
1163
.
3.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(
9
), pp.
2477
2491
.
4.
Springer
,
T. E.
,
Wilson
,
M. S.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.
5.
Fuller
,
T. F.
, and
Newman
,
J.
,
1993
, “
Water and Thermal Management in Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
5
), pp.
1218
1225
.
6.
Nguyen
,
T. V.
, and
White
,
R. E.
,
1993
, “
A Water and Heat Management Model for Proton-Exchange-Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
8
), pp.
2178
2186
.
7.
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
1998
, “
An Along-the-Channel Model for Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
145
(
4
), pp.
1149
1159
.
8.
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
1999
, “
Multicomponent Transport in Porous Electrodes of Proton Exchange Membrane Fuel Cells Using the Interdigitated Gas Distributors
,”
J. Electrochem. Soc.
,
146
(
1
), pp.
38
45
.
9.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
,
1998
, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
,
44
(
11
), pp.
2410
2422
.
10.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
1999
, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
,
37
(
4
), pp.
431
452
.
11.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2000
, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
147
(
12
), pp.
4485
4493
.
12.
He
,
W.
,
Yi
,
J. S.
, and
Nguyen
,
T. V.
,
2000
, “
Two-Phase Flow Model of the Cathode of PEM Fuel Cells Using Interdigitated Flow Fields
,”
AIChE J.
,
46
(
10
), pp.
2053
2064
.
13.
Natarajan
,
D.
, and
Nguyen
,
T. V.
,
2001
, “
A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors
,”
J. Electrochem. Soc.
,
148
(
12
), pp.
A1324–A1335
A1324–A1335
.
14.
Zhou, T., and Liu, H., 2000, “3-D Model of Proton Exchange Membrane Fuel Cells,” Proceedings of the ASME Heat Transfer Division, 366-1, pp. 43–49.
15.
Shimpalee
,
S.
, and
Dutta
,
S.
,
2000
, “
Numerical Prediction of Temperature Distribution in PEM Fuel Cells
,”
Numer. Heat Transfer, Part A
,
38
(
2
), pp.
111
128
.
16.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2000
, “
Three-Dimensional Numerical Simulation of Straight Channel PEM Fuel Cells
,”
J. Appl. Electrochem.
,
30
, pp.
135
146
.
17.
Dutta
,
S.
,
Shimpalee
,
S.
, and
Van Zee
,
J. W.
,
2001
, “
Numerical Prediction of Mass-Exchange Between Cathode and Anode Channels in a PEM Fuel Cell
,”
Int. J. Heat Mass Transfer
,
44
(
11
), pp.
2029
2042
.
18.
Berning
,
T.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
2002
, “
Three-Dimensional Computational Analysis of Transport Phenomena in a PEM Fuel Cell
,”
J. Power Sources
,
106
(
1–2
), pp.
284
294
.
19.
Um, S., and Wang, C. Y., 2000, “Three-Dimensional Analysis of Transport and Reaction in Proton Exchange Membrane Fuel Cells,” Proceedings of the ASME Heat Transfer Division—2000, HTD-Vol. 366-1, pp. 19–25.
20.
Nield, D. A., and Bejan, A., 1992, Convection in Porous Media, Springer, New York.
21.
Bejan, A., 2000, Shape and Structure, From Engineering to Nature, Cambridge University Press, Cambridge.
22.
Ticianelli
,
E. A.
,
Derouin
,
C. R.
, and
Srinivasan
,
S.
,
1988
, “
Localization of Platinum in Low Catalyst Loading Electrodes to Attain High Power Densities in SPE Fuel Cells
,”
J. Electroanal. Chem.
,
251
(
2
), pp.
275
295
.
23.
Dagan, G., 1989, Flow and Transport in Porous Formations, Springer, Berlin.
24.
Bear, J., and Bachmat, Y., 1990, Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Academic Publishers, Dordrecht.
25.
Kaviany, M., 1995, Principles of Heat Transfer in Porous Media, second ed., Springer, New York.
26.
Whitaker, S., 1999, The Method of Volume Averaging, Kluwer Academic Publishers, Dordrecht.
27.
Stull, D. R., and Prophet, H., 1971, JANAF Thermochemical Tables, second ed., NSRDS-NBS 37, National Bureau of Standards, Washington.
28.
Curtiss
,
C. F.
, and
Hirschfelder
,
J. O.
,
1949
, “
Transport Properties of Multicomponent Gas Mixtures
,”
J. Chem. Phys.
,
17
(
6
), pp.
550
555
.
29.
Wilke
,
C. R.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.
30.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
31.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys.
,
33
(
10
), pp.
3125
3131
.
32.
Mason
,
E. A.
, and
Saxena
,
S. C.
,
1958
, “
Approximate Formula for the Thermal Conductivity of Gas Mixtures
,”
Phys. Fluids
,
1
(
5
), pp.
361
369
.
33.
Chapman, S., and Cowling, T. G., 1990, The Mathematical Theory of Non-Uniform Gases, third ed., Cambridge University Press, Cambridge.
34.
Newman, J. S., 1991, Electrochemical Systems, second ed., Prentice Hall, New Jersey.
35.
Atkins, P., and de Paula, J., 2002, Atkins’ Physical Chemistry, seventh ed., Oxford University Press, New York.
36.
Mazumder
,
S.
, and
Lowry
,
S. A.
,
2001
, “
The Treatment of Reacting Surfaces for Finite-Volume Schemes on Unstructured Meshes
,”
J. Chem. Phys.
,
173
(
2
), pp.
512
526
.
37.
Mazumder
,
S.
, and
Cole
,
J. V.
,
2003
, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, I. Model Predictions without Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
1503
1509
.
38.
Wang
,
C. Y.
, and
Cheng
,
P.
,
1997
, “
Multiphase Flow and Heat Transfer in Porous Media
,”
Adv. Heat Transfer
,
30
, pp.
93
196
.
39.
Mazumder
,
S.
, and
Cole
,
J. V.
,
2003
, “
Rigorous 3-D Mathematical Modeling of PEM Fuel Cells, II. Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
1510
1517
.
40.
Berning
,
T.
, and
Djilali
,
N.
,
2003
, “
A 3D, Multiphase, Multicomponent Model of the Cathode and Anode of a PEM Fuel Cell
,”
J. Electrochem. Soc.
,
150
(
12
), pp.
1589
1598
.
41.
2002, Duocel RVC Physical Characteristics Data Sheet, ERG Materials and Aerospace, Oakland, CA.
42.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2002
, “
The Effects of Compression and Pore Size Variations on the Liquid Flow Characteristics in Metal Foams
,”
J. Fluids Eng.
,
124
(
1
), pp.
263
272
.
43.
Boomsma
,
K.
, and
Poulikakos
,
D.
,
2001
, “
On the Effective Thermal Conductivity of a Three-Dimensionally Structured Fluid-Saturated Metal Foam
,”
Int. J. Heat Mass Transfer
,
44
(
4
), pp.
827
836
.
44.
Kuchling, H., 1991, Taschenbuch der Physik, Fachbuchverlag Leipzig, Leipzig.
You do not currently have access to this content.