A numerical bifurcation analysis is carried out in order to determine the solution structure of longitudinal fins subject to multi-boiling heat transfer mode. The thermal analysis can no longer be performed independently of the working fluid since the heat transfer coefficient is temperature dependent and includes the nucleate, the transition and the film boiling regimes where the boiling curve is obtained experimentally for a specific fluid. The heat transfer process is modeled using one-dimensional heat conduction with or without heat transfer from the fin tip. Furthermore, five fin profiles are considered: the constant thickness, the trapezoidal, the triangular, the convex parabolic and the parabolic. The multiplicity structure is obtained in order to determine the different types of bifurcation diagrams, which describe the dependence of a state variable of the system (for instance the fin temperature or the heat dissipation) on a design (Conduction-Convection Parameter) or operation parameter (base Temperature Difference). Specifically the effects of the base Temperature Difference, of the Conduction-Convection Parameter and of the Biot number are analyzed and presented in several diagrams since it is important to know the behavioral features of the heat rejection mechanism such as the number of the possible steady states and the influence of a change in one or more operating variables to these states.

1.
Haley
,
K. W.
, and
Westwater
,
J. W.
,
1965
, “
Heat Transfer From a Fin to a Boiling Liquid
,”
Chem. Eng. Sci.
,
20
, pp.
711
711
.
2.
Haley, K. W., and Westwater, J. W., 1966, “Boiling Heat Transfer From Single Fins,” Proc. 3rd International Heat Transfer Conference, AIChE-ASME, 3, pp. 245–253.
3.
Klein
,
G. J.
, and
Westwater
,
J. W.
,
1973
, “
Heat Transfer from Multiple Spines to Boiling Liquids
,”
AIChe J.
,
17
(
5
), pp.
1050
1056
.
4.
Shih
,
C.-C.
, and
Westwater
,
J. W.
,
1974
, “
Spheres, Hemispheres and Discs as High-Performance Fins for Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
17
, pp.
125
133
.
5.
Wilkins, J. E. Jr., 1960, “Minimum Mass Thin Fins for Space Radiators,” Proc. Heat Transfer and Fluid Mechanics Institute, 228, Stanford University Press.
6.
Petukhov
,
B. S.
,
Kovalev
,
S. A.
,
Zhukov
,
V. M.
, and
Kazakov
,
G. M.
,
1971
, “
Measurement of Local Heat Transfer on a Nonisothermal Surface
,”
High Temp.
,
9
(
6
), pp.
1159
1161
.
7.
Petukhov
,
B. S.
,
Kovalev
,
S. A.
, and
Zhukov
,
V. M.
,
1973
, “
Local Boiling Heat Transfer on Nonisothermal Surfaces
,”
Heat Transfer-Sov. Res.
,
5
(
6
), pp.
154
162
.
8.
Petukhov
,
B. S.
,
Kovalev
,
S. A.
,
Zhukov
,
V. M.
, and
Kazakov
,
G. M.
,
1972
, “
Study of Heat Transfer During the Boiling of a Liquid on the Surface of a Single Fin
,”
Heat Transfer-Sov. Res.
,
4
(
4
), pp.
148
156
.
9.
Kovalev
,
S. A.
, and
Rybchinskaya
,
G. B.
,
1978
, “
Prediction of the Stability of Pool Boiling Heat Transfer to Finite Disturbances
,”
Int. J. Heat Mass Transfer
,
21
, pp.
694
700
.
1.
Kovalev
,
S. A.
,
Zhukov
,
V. M.
, and
Usatikov
,
S. V.
,
2000
, comment on the paper by Lin, W. W., Yang, J. C., and Lee, D. J., 2000, “
Metastable Pin Fin Boiling
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1629
1635
;
2.
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3575
3577
.
1.
Lai
,
F.-S.
, and
Hsu
,
Y.-Y.
,
1967
, “
Temperature Distribution in a Fin Partially Cooled by Nucleate Boiling
,”
AIChE J.
,
13
(
4
), pp.
817
821
.
2.
Unal
,
H. C.
,
1985
, “
Determination of the Temperature Distribution in an Extended Surface With a Non-Uniform Heat Transfer Coefficient
,”
Int. J. Heat Mass Transfer
,
28
(
12
), pp.
2279
2284
.
3.
Unal
,
H. C.
,
1987
, “
An Analytic Study of Boiling Heat Transfer From a Fin
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
341
349
.
4.
Liaw
,
S. P.
, and
Yeh
,
R. H.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-I. Single Heat Transfer Mode
,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1509
1515
.
5.
Liaw
,
S. P.
, and
Yeh
,
R. H.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-II. Multi-boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1517
1524
.
6.
Lin
,
W. W.
, and
Lee
,
D. J.
,
1996
, “
Boiling on a Straight Pin Fin
,”
AIChE J.
,
42
(
10
), pp.
2721
2728
.
7.
Lin
,
W. W.
, and
Lee
,
D. J.
,
1998
, “
Boiling on a Plate Fin and Annular Fin
,”
Int. Commun. Heat Mass Transfer
,
25
(
8
), pp.
1169
1180
.
8.
Lin
,
W. W.
,
Yang
,
J. C.
, and
Lee
,
D. J.
,
1999
, “
Boiling on a Conical Spine
,”
Exp. Heat Transfer
,
12
, pp.
175
191
.
9.
Lin
,
W. W.
,
Yang
,
J. C.
, and
Lee
,
D. J.
,
2000
, “
Metastable Pin Fin Boiling
,”
Int. J. Heat Mass Transfer
,
43
(
9
), pp.
1629
1635
.
10.
Aris, R., 1975, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vols. 1 and 2, Clarendon Press, Oxford.
11.
Golubitsky, M., and Scaeffer, D., 1985, Singularities and Groups in Bifurcation Theory, Vols. 1 and 2, Springer, New York.
12.
Balakotaiah
,
V.
, and
Luss
,
D.
,
1982
, “
Structure of the Steady State Solutions of Lumped-Parameter Chemically Reacting Systems
,”
Chem. Eng. Sci.
,
37
, pp.
1611
1623
.
13.
Balakotaiah
,
V.
, and
Luss
,
D.
,
1982
, “
Global Analysis of the Multiplicity Features of Multi-Reaction Lumped Multi-Parameter Systems
,”
Chem. Eng. Sci.
,
39
, pp.
865
881
.
14.
Witmer
,
G.
,
Balakotaiah
,
V.
, and
Luss
,
D.
,
1986
, “
Finding Singular Points of Two-Point Boundary Value Problems
,”
J. Comp. Phys.
,
65
, pp.
244
250
.
15.
Michelsen
,
M. L.
, and
Villadsen
,
J.
,
1972
, “
Diffusion and Reaction on Spherical Catalysts: Steady State and Local Stability Analysis
,”
Chem. Eng. Sci.
,
27
, pp.
751
762
.
16.
Kubı´cˇek
,
M.
, and
Hlava´cˇek
,
V.
,
1971
, “
Solution of Non-Linear Boundary Value Problems-III. A Novel Method: Differentiation With Respect to an Actual Parameter
,”
Chem. Eng. Sci.
,
26
, pp.
705
709
.
17.
Kubı´cˇek
,
M.
, and
Hlava´cˇek
,
V.
,
1974
, “
Solution of Non-Linear Boundary Value Problems-VIII. Evaluation of Branching Points Based on Shooting Method and GPM Technique
,”
Chem. Eng. Sci.
,
29
, pp.
1695
1699
.
18.
Hsuen
,
H. K. D.
, and
Sotirchos
,
S. V.
,
1989
, “
Multiplicity Analysis of Intraparticle Char Combustion
,”
Chem. Eng. Sci.
,
44
(
11
), pp.
2639
2651
.
19.
Hsuen
,
H. K. D.
, and
Sotirchos
,
S. V.
,
1989
, “
Multiplicity Analysis of Char Combustion With Homogeneous CO Oxidation
,”
Chem. Eng. Sci.
,
44
(
11
), pp.
2653
2665
.
20.
Hsuen
,
H. K. D.
, and
Sotirchos
,
S. V.
,
1991
, “
Multiplicity and Stability Phenomena in Diffusion Flames
,”
Chem. Eng. Sci.
,
46
(
12
), pp.
3165
3175
.
21.
Dhir
,
V. K.
, and
Liaw
,
S. P.
,
1989
, “
Framework for a Unified Model for Nucleate and Transition Pool Boiling
,”
ASME J. Heat Transfer
,
111
, pp.
739
746
.
22.
Murray
,
M. W.
,
1938
, “
Heat Transfer Through an Annular Disk or Fin of Uniform Thickness
,”
ASME J. Appl. Mech.
,
60A
, pp.
278
278
.
23.
Gardner
,
K. A.
,
1945
, “
Efficiency of Extended Surfaces
,”
Trans. ASME
,
69
(
8
), pp.
621
631
.
24.
Razelos
,
P.
, and
Georgiou
,
E.
,
1992
, “
Two-Dimensional Effects and Design Criteria for Convective Extended Surfaces
,”
Heat Transfer Eng.
,
13
(
3
), pp.
38
48
.
25.
Ascher, U. M., Mattheij, R. M. M., and Russel, R. D., 1995, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, 2nd ed., SIAM, Philadelphia, PA.
26.
Keller, H. B., 1992, Numerical Methods for Two-Point Boundary-Value Problems, Dover, New York.
27.
Seydel, R., 1994, Practical Bifurcation and Stability Analysis. From Equilibrium to Chaos, Springer-Verlag, New York.
28.
Govaerts, W. J. F., 2000, Numerical Methods for Bifurcations of Dynamical Equilibria, SIAM, Philadelphia, PA.
29.
Iooss, G., and Joseph, D. D., 1990, Elementary Stability and Bifurcation Theory, 2nd ed., Springer-Verlag, New York.
You do not currently have access to this content.