Abstract

Two models, E-S and R-S unit cell models, are presented based on the thermal-electrical analogy technique. The analytical expressions for transverse thermal conductivities of unidirectional composites are derived. The dimensionless effective transverse thermal conductivities ke+ are expressed as a function of the ratio (β) of thermal conductivities of filler to matrix, filler volume fraction vf and the geometry ratio ρ=a/b of the filler. The optimization of transverse thermal conductivities of unidirectional composites is then analyzed under different filler volume fractions vf, thermal conductivity ratios β and different geometric architectures. The present analysis allows for a fairly precise evaluation of configuration performance and comparisons of different arrangements. The results show that if a composite is designed for insulation material, we should choose ρ<1, and if a composite is designed for heat dissipating purpose, we should choose ρ>1.

1.
Levy
,
E. K.
,
1971
, “
Optimum Plate Spacing for Laminar Natural Convection Heat Transfer from Parallel Vertical Isothermal Flat Plates
,”
ASME J. Heat Transfer
,
93
, pp.
463
465
.
2.
Bar-Cohen
,
A.
, and
Rohsenow
,
W. M.
,
1984
, “
Thermal Optimum Spacing of Vertical, Natural Convection Cooled, Parallel Plates
,”
ASME J. Heat Transfer
,
106
, pp.
116
123
.
3.
Anand
,
N. K.
,
Kim
,
S. H.
, and
Fletcher
,
L. S.
,
1992
, “
The Effect of Plate Spacing on Free Convection Between Heated Parallel Plates
,”
ASME J. Heat Transfer
,
114
, pp.
515
518
.
4.
Hu
,
M. H.
, and
Chang
,
Y. P.
,
1973
, “
Optimization of Finned Tubes for Heat Transfer in Laminar Flow
,”
ASME J. Heat Transfer
,
95
, pp.
332
338
.
5.
Fabbri
,
G.
,
1998
, “
Heat Transfer Optimization in Internally Finned Tubes Under Laminar Flow Conditions
,”
Int. J. Heat Mass Transfer
,
41
, pp.
1243
1253
.
6.
Kim
,
S. J.
,
Yoo
,
J. W.
, and
Jang
,
S. P.
,
2002
, “
Thermal Optimization of a Circular-Sectored Finned Tube Using a Porous Medium Approach
,”
ASME J. Heat Transfer
,
124
, pp.
1026
1033
.
7.
Brown
,
A.
,
1965
, “
Optimum Dimensions of Uniform Annular Fins
,”
Int. J. Heat Mass Transfer
,
8
, pp.
662
665
.
8.
Ulman
,
A.
, and
Kalman
,
H.
,
1987
, “
Efficiency and Optimized Dimensions of Annular Fins of Different Cross-Section Shapes
,”
Int. J. Heat Mass Transfer
,
32
, pp.
1105
1110
.
9.
Kundu
,
B.
, and
Das
,
P. K.
,
2001
, “
Performance Analysis and Optimization of Annular Fin with a Step Change in Thickness
,”
ASME J. Heat Transfer
,
123
, pp.
601
604
.
10.
Liu
,
C. Y.
,
1960
, “
On minimum Weight Rectangular Radiating Fins
,”
J. Aerosp. Sci.
,
27
, pp.
871
871
.
11.
Aziz
,
A.
, and
Kraus
,
A. D.
,
1996
, “
Optimum Design of Radiating and Convective-Radiating Fins
,”
Heat Transfer Eng.
,
17
, pp.
44
78
.
12.
Krikkis
,
R. N.
, and
Razelos
,
P.
,
2002
, “
Optimum Design of Spacecraft Radiators with Longitudinal Rectangular and Triangular Fins
,”
ASME J. Heat Transfer
,
124
, pp.
805
811
.
13.
Ogiso
,
K.
,
2001
, “
Assessment of Overall Cooling Performance in Thermal Design of Electronics Based on Thermodynamics
,”
ASME J. Heat Transfer
,
123
, pp.
999
1005
.
14.
Bejan
,
A.
,
1979
, “
A Study of Entropy Generation in Fundamental Convective Heat Transfer
,”
ASME J. Heat Transfer
,
101
, pp.
718
725
.
15.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2003
, “
Optimal Temperature and Current Cycles for Curing of Composites Using Embedded Resistance Heating Elements
,”
ASME J. Heat Transfer
,
125
, pp.
126
136
.
16.
Vynnycky
,
M.
,
Ferrari
,
J.
, and
Lior
,
N.
,
2003
, “
Some Analytical and Numerical Solutions to Inverse Problems Applied to Optimizing Phase-Transformation Tracking in Gas Queching
,”
ASME J. Heat Transfer
,
125
, pp.
1
10
.
17.
Aung, W., 1988, Cooling Technology for Electronic Equipment, Hemisphere, New York.
18.
Bejan
,
A.
,
1997
, “
Constructal-Theory Network of Conducting Paths for Cooling a Heat Generating Volume
,”
Int. J. Heat Mass Transfer
,
40
, pp.
799
816
.
19.
Neagu
,
M.
, and
Bejan
,
A.
,
2001
, “
Constructal Placement of High-Conductivity Inserts in a Slab: Optimal Design of Roughness
,”
ASME J. Heat Transfer
123
, pp.
1184
1189
.
20.
Xia, Z. Z., and Guo, Z. Y., 2001, “Simulations on Optimization of Thermal Conduction by Life Evolvement Processes,” Advances on Natural Science (in Chinese), 11, pp. 845–852.
21.
James
,
B. W.
, and
Keen
,
G. S.
,
1985
, “
A Nomogram for the Calculation of the Transverse Thermal Conductivity of Uniaxial Composite Lamina
,”
High Temp. - High Press.
,
17
, pp.
477
480
.
22.
Ramani
,
K.
, and
Vaidyanathan
,
A.
,
1995
, “
Finite Element Analysis of Effective Thermal Conductivity of Filled Polymeric Composites
,”
J. Compos. Mater.
,
29
, pp.
1725
1740
.
23.
Islam
,
Md. R.
, and
Pramila
,
A.
,
1999
, “
Thermal Conductivity of Fiber Reinforced Composites by the FEM
,”
J. Compos. Mater.
,
33
, pp.
1699
1715
.
24.
Springer
,
G. S.
, and
Tsai
,
S. W.
,
1967
, “
Thermal Conductivities of Unidirectional Materials
,”
J. Compos. Mater.
,
1
, pp.
166
173
.
25.
Pitchumani
,
R.
, and
Yao
,
S. C.
,
1991
, “
Correlation of Thermal Conductivities of Unidirectional Fibrous Composites Using Local Fractal Techniques
,”
ASME J. Heat Transfer
,
113
, pp.
788
796
.
26.
Zou
,
M. Q.
,
Yu
,
B. M.
, and
Zhang
,
D. M.
,
2002
, “
An Analytical Solution for Transverse Thermal Conductivities of Unidirectional Fiber Composites With Thermal Barrier
,”
J. Phys. D
,
35
, pp.
1867
1874
.
27.
Thornburg, J. D., and Pears, C. D., 1965, “Prediction of the Thermal Conductivity of Filled and Reinforced Plastics,” ASME Paper 65-WA/HT-4.
28.
Zehnder
,
P.
,
Schlunder
,
E. U.
,
1970
, “
Thermal Conductivity of Granular Materials at Moderate Temperatures (in German)
,”
Chem.-Ing.-Tech.
,
42
, pp.
933
941
.
29.
Hus
,
C. T.
,
Cheng
,
P.
, and
Wong
,
K. W.
,
1995
, “
A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media
,”
ASME J. Heat Transfer
,
117
, pp.
264
269
.
30.
Yu
,
B. M.
, and
Cheng
,
P.
,
2002
, “
Fractal Models for the Effective Thermal Conductivity of Bi-Dispersed Porous Media
,”
J. Thermophys. Heat Transfer
,
16
, pp.
22
29
.
31.
Lu
,
S. Y.
,
1995
, “
The Effective Thermal Conductivities of Composites with 2-D Arrays of Circular and Square Cylinders
,”
J. Compos. Mater.
,
29
, pp.
483
506
.
32.
James
,
B. W.
,
Wostenholm
,
G. H.
,
Keen
,
G. S.
, and
Mclvor
,
S. D.
,
1987
, “
Prediction and Measurement of the Thermal Conductivity of Composite Materials
,”
J. Phys. D
,
20
, pp.
261
268
.
You do not currently have access to this content.