Abstract

The self-preserving properties of round turbulent thermals, puffs, starting plumes and starting jets, in unstratified and uniform crossflow, were investigated experimentally. The experiments involved dye-containing fresh water (for nonbuoyant flows) and salt water (for buoyant flows) sources injected vertically downward into crossflowing fresh water within a water channel. Time-resolved video images of the flows were obtained using CCD cameras. Experimental conditions were as follows: source exit diameters of 3.2 and 6.4 mm, source Reynolds numbers of 2,500–16,000, source/ambient velocity ratios of 4–35, source/ambient density ratios (for buoyant flows) of 1.073 and 1.150, volumes of injected source fluid (for thermals and puffs) comprising 16–318 source diameters, streamwise (vertical) penetration distances of 0–200 source diameters and 0–13 Morton length scales (for buoyant flows) and crosstream (horizontal) penetration distances of 0–620 source diameters. Near-source behavior varied significantly with source properties and distance from the source but the flows generally became turbulent for streamwise distances within 5 source diameters from the source and became self-preserving for streamwise distances from the source greater than 40–50 source diameters. Crosstream motion satisfied the no-slip convection approximation. Streamwise motion for self-preserving conditions satisfied the behavior of corresponding self-preserving flows in still fluids: round thermals and puffs in still fluids for round thermals and puffs in crossflow and two-dimensional line thermals and puffs in still fluids for round starting plumes and jets in crossflow. The no-slip convection approximation for crossflow motion combined with self-preserving approximations for streamwise motion were also effective for predicting flow trajectories at self-preserving conditions for steady round turbulent plumes and jets in crossflow.

1.
Sangras
,
R.
,
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2002
, “
Self-Preserving Properties of Unsteady Round Nonbuoyant Turbulent Starting Jets and Puffs in Still Fluids
,”
ASME J. Heat Transfer
,
124
, pp.
460
469
.
2.
Diez
,
F. J.
,
Sangras
,
R.
,
Kwon
,
O. C.
, and
Faeth
,
G. M.
,
2003
, “
Self-Preserving Properties of Unsteady Round Nonbuoyant Turbulent Starting Jets and Puffs in Still Fluids
,”
ASME J. Heat Transfer
,
125
, pp.
204
205
.
3.
Diez
,
F. J.
,
Kwon
,
O. C.
,
Sangras
,
R.
, and
Faeth
,
G. M.
,
2003
, “
Self-Preserving Properties of Unsteady Round Buoyant Turbulent Plumes and Thermals in Still Fluids
,”
ASME J. Heat Transfer
,
125
, pp.
821
830
.
4.
Turner
,
J. S.
,
1969
, “
Buoyant Plumes and Thermals
,”
Annu. Rev. Fluid Mech.
,
1
, pp.
29
44
.
5.
Turner, J. S., 1973, Buoyancy Effects in Fluids, Cambridge University Press, Cambridge.
6.
Tennekes, H., and Lumley, J. L., 1972, A First Course in Turbulence, MIT Press, Cambridge, pp. 113–124.
7.
Hinze, J. O., 1975, Turbulence, 2nd ed., McGraw-Hill, New York, pp. 534–584.
8.
Chen, C. J., and Rodi, W., 1980, Vertical Turbulent Buoyant Jets: A Review of Experimental Data, Pergamon Press, Oxford.
9.
List
,
E. J.
,
1982
, “
Turbulent Jets and Plumes
,”
Annu. Rev. Fluid Mech.
,
14
, pp.
189
212
.
10.
Dai
,
Z.
,
Tseng
,
L.-K.
, and
Faeth
,
G. M.
,
1994
, “
Structure of Round, Fully-Developed, Buoyant Turbulent Plumes
,”
ASME J. Heat Transfer
,
116
, pp.
409
417
.
11.
Morton
,
B. R.
,
1959
, “
Forced Plumes
,”
J. Fluid Mech.
,
5
, pp.
151
163
.
12.
Scorer
,
R. S.
,
1957
, “
Experiments on Connection of Isolated Masses of Buoyant Fluid
,”
J. Fluid Mech.
,
2
, pp.
588
594
.
13.
Turner
,
J. S.
,
1964
, “
The Dynamics of Spheroidal Masses of Buoyant Fluid
,”
J. Fluid Mech.
,
19
, pp.
481
490
.
14.
Fay
,
J. A.
, and
Lewis
,
D. H.
,
1976
, “
Unsteady Burning of Unconfined Fuel Vapor Clouds
,”
Proceedings of the Combustion Institute
,
16
, pp.
1397
1405
.
15.
Batt
,
R. G.
,
Brigoni
,
R. A.
, and
Rowland
,
D. J.
,
1984
, “
Temperature-Field Structure Within Atmospheric Buoyant Thermals
,”
J. Fluid Mech.
,
141
, pp.
1
25
.
16.
Thompson
,
R. S.
,
Snyder
,
W. H.
, and
Weil
,
J. C.
,
2000
, “
Laboratory Simulation of the Rise of Buoyant Thermals Created by Open Detonation
,”
J. Fluid Mech.
,
417
, pp.
127
156
.
17.
Richards
,
J. M.
,
1965
, “
Puff Motions in Unstratified Surroundings
,”
J. Fluid Mech.
,
21
, pp.
97
109
.
18.
Kovasznay
,
L. S. G.
,
Funjita
,
H.
, and
Lee
,
R. L.
,
1974
, “
Unsteady Turbulent Puffs
,”
Adv. Geophys.
,
18B
, pp.
253
263
.
19.
Turner
,
J. S.
,
1962
, “
The Starting Plume in Neutral Surroundings
,”
J. Fluid Mech.
,
13
, pp.
356
368
.
20.
Middleton
,
J. H.
,
1975
, “
The Asymptotic Behavior of a Starting Plume
,”
J. Fluid Mech.
,
72
, pp.
753
771
.
21.
Delichatsios
,
M. A.
,
1979
, “
Time Similarity Analysis of Unsteady Buoyant Plumes
,”
J. Fluid Mech.
,
93
, pp.
241
250
.
22.
Pantzlaff
,
L.
, and
Lueptow
,
R. M.
,
1999
, “
Transient Positively and Negatively Buoyant Turbulent Round Jets
,”
Exp. Fluids
,
27
, pp.
117
125
.
23.
Witze
,
P. O.
,
1983
, “
Hot-Film Anemometer Measurements in a Starting Tubulent Jet
,”
AIAA J.
,
21
, pp.
308
309
.
24.
Johari
,
J.
, and
Paduano
,
R.
,
1987
, “
Dilution and Mixing in an Unsteady Turbulent Jet
,”
Exp. Fluids
,
23
, pp.
272
280
.
25.
Kato
,
S. M.
,
Groenwagen
,
B. C.
, and
Breidenthal
,
R. E.
,
1987
, “
On Turbulent Mixing in Nonsteady Jets
,”
AIAA J.
,
25
, pp.
165
168
.
26.
Kouros
,
H.
,
Medina
,
R.
, and
Johari
,
H.
,
1993
, “
Spreading Rate of an Unsteady Turbulent Jet
,”
AIAA J.
,
31
, pp.
1524
1526
.
27.
Adriani
,
R.
,
Coghe
,
A.
, and
Cossali
,
G. E.
,
1996
, “
Near-Field Entrainment in Unsteady Gas Jets and Diesel Sprays: A Comparative Study
,”
Proceedings of the Combustion Institute
,
26
, pp.
2549
2556
.
28.
Hill
,
P. G.
, and
Ouelette
,
P.
,
1999
, “
Transient Turbulent Gaseous Fuel Jets for Diesel Engines
,”
ASME J. Fluids Eng.
,
121
, pp.
93
101
.
29.
Anwar
,
H. O.
,
1969
, “
Experiment on an Effluent Discharging From a Slot Into Stationary or Slow Moving Fluid of Greater Density
,”
J. Hydraul. Res.
,
7
, pp.
411
430
.
30.
Lutti
,
F. M.
, and
Brzustowski
,
T. A.
,
1977
, “
Flow Due to a Two-Dimensional Heat Source With Cross Flow in the Atmosphere
,”
Combust. Sci. Technol.
,
16
, pp.
71
87
.
31.
Andreopoulos
,
J.
,
1983
, “
Heat Transfer Measurements in a Heated Jet-Pipe Flow Issuing Into a Cold Cross Stream
,”
Phys. Fluids
,
26
, pp.
3200
3210
.
32.
Alton
,
B. W.
,
Davidson
,
G. A.
, and
Slawson
,
P. R.
,
1993
, “
Comparison of Measurements and Integral Model Predictions of Hot Water Plume Behavior in a Crossflow
,”
Atmos. Environ., Part A
,
27A
, pp.
589
598
.
33.
Hasselbrink
,
E. F.
, and
Mungal
,
M. G.
,
1998
, “
Observations on the Stabilization Region of Lifted Non-Premixed Methane Transverse Jet Flames
,”
Proceedings of the Combustion Institute
,
27
, pp.
1167
1173
.
34.
Baum
,
H. R.
,
McGrattan
,
K. B.
, and
Rehm
,
R. G.
,
1994
, “
Simulation of Smoke Plumes From Large Pool Fires
,”
Proceedings of the Combustion Institute
,
25
, pp.
1463
1469
.
35.
Keffer
,
J. F.
, and
Baines
,
W. D.
,
1963
, “
The Round Turbulent Jet in a Cross-Wind
,”
J. Fluid Mech.
,
81
, pp.
45
62
.
36.
Kamotani
,
Y.
, and
Greber
,
I.
,
1972
, “
Experiments on a Turbulent Jet in Crossflow
,”
AIAA J.
,
10
, pp.
1425
1429
.
37.
Chaissaing
,
P.
,
George
,
J.
,
Claria
,
A.
, and
Sananes
,
F.
,
1974
, “
Physical Characteristics of Subsonic Jets in a Cross Stream
,”
J. Fluid Mech.
,
62
, pp.
41
61
.
38.
Kelso
,
R. M.
,
Lim
,
T. T.
, and
Perry
,
A. E.
,
1996
, “
An Experimental Study of Round Jets in Cross-Flow
,”
J. Fluid Mech.
,
306
, pp.
111
144
.
39.
Smith
,
S. H.
, and
Mungal
,
M. G.
,
1998
, “
Mixing, Structure and Scaling of a Jet in Crossflow
,”
J. Fluid Mech.
,
357
, pp.
83
122
.
40.
Wu
,
P.-K.
,
Miranda
,
R. F.
, and
Faeth
,
G. M.
,
1995
, “
Effects of Initial Flow Conditions on Primary Breakup of Nonturbulent and Turbulent Round Liquid Jets
,”
Atomization Sprays
,
5
, pp.
175
196
.
41.
Lange, N. A., 1952, Handbook of Chemistry, Handbook Publishers, Sandusky, OH, p. 1160.
42.
George
, Jr.,
W. K.
,
Alpert
,
R. L.
, and
Tamanini
,
F.
,
1977
, “
Turbulence Measurements in an Axisymmetric Buoyant Plume
,”
Int. J. Heat Mass Transfer
,
20
, pp.
1145
1154
.
You do not currently have access to this content.