A higher order version of the generalized gradient diffusion hypothesis (HOGGDH) for turbulent heat flux is applied to predict heat transfer in a square-sectioned U-bend duct. The flow field turbulence models coupled with are a cubic nonlinear eddy viscosity model and a full second moment closure. Both of them are low Reynolds number turbulence models. The benefits of using the HOGGDH heat flux model are presented through the comparison with the standard GGDH.
Issue Section:
Technical Notes
Keywords:
pipe flow,
heat transfer,
turbulence,
viscosity,
Computational,
Heat Transfer,
Modeling,
Three-Dimensional,
Turbulence
1.
Chang
, S. M.
, Humphrey
, J. A. C.
, and Modavi
, A.
, 1983
, “Turbulent Flow in a Strongly Curved U-bend and Downstream Tangent of Square Cross-Sections
,” Physico Chemical Hydrodynamics
, 4-3
, pp. 243
–269
.2.
Johnson
, R. W.
, and Launder
, B. E.
, 1985
, “Local Nusselt Number and Temperature Field in Turbulent Flow Through a Heated Square-Sectioned U-bend
,” Int. J. Heat Fluid Flow
, 6
, pp. 171
–180
.3.
Iacovides
, H.
, and Launder
, B. E.
, 1995
, “Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: a Review
,” Int. J. Heat Fluid Flow
, 16
, pp. 454
–470
.4.
Iacovides
, H.
, Launder
, B. E.
, and Li
, H.-Y.
, 1996
, “Application of a Reflection-free DSM to Turbulent Flow and Heat Transfer in a Square-Sectioned U-Bend
,” Exp. Therm. Fluid Sci.
, 13
, pp. 419
–429
.5.
Craft
, T. J.
, Launder
, B. E.
, and Suga
, K.
, 1997
, “Prediction of Turbulent Transitional Phenomena With a Nonlinear Eddy-Viscosity Model
,” Int. J. Heat Fluid Flow
, 18
, pp. 15
–28
.6.
Chen
, W. L.
, Lien
, F. S.
, and Leschziner
, M. A.
, 1998
, “Computational Prediction of Flow Around Highly Loaded Compressor-Cascade Blades with Non-Linear Eddy Viscosity Models
,” Int. J. Heat Fluid Flow
, 19
, pp. 307
–319
.7.
Barakos
, G.
, and Drikakis
, D.
, 2000
, “Investigation of Nonlinear Eddy-Viscosity Turbulence Models in Shock/Boundary-Layer Interaction
,” AIAA J.
, 38
, pp. 461
–469
.8.
Suga
, K.
, Nagaoka
, M.
, Horinouchi
, N.
, Abe
, K.
, and Kondo
, Y.
, 2001
, “Application of a Three Equation Cubic Eddy Viscosity Model to 3-D Turbulent Flows by the Unstructured Grid Methods
,” Int. J. Heat Fluid Flow
, 22
, pp. 259
–271
.9.
Launder
, B. E.
, 1988
, “On the Computation of Convective Heat Transfer in Complex Turbulent Flows
,” ASME J. Heat Transfer
, , 110
, pp. 1112
–1128
.10.
Daly
, B. J.
, and Harlow
, F. H.
, 1970
, “Transport Equation in Turbulence
,” Phys. Fluids
, 13
, pp. 2634
–2649
.11.
Rogers
, M. M.
, Mansour
, N. N.
, and Reynolds
, W. C.
, 1989
, “An Algebraic Model for the Turbulent Flux of a Passive Scalar
,” J. Fluid Mech.
, 203
, pp. 77
–101
.12.
So
, R. M. C.
, and Sommer
, T. P.
, 1996
, “An Explicit Algebraic Heat-Flux Model for the Temperature Field
,” Int. J. Heat Mass Transf.
, 39
, pp. 455
–465
.13.
Suga
, K.
, and Abe
, K.
, 2000
, “Nonlinear Eddy Viscosity Modeling for Turbulence and Heat Transfer Near Wall and Shear-Free Boundaries
,” Int. J. Heat Fluid Flow
, 21
, pp. 37
–48
.14.
Launder
, B. E.
, and Shima
, N.
, 1989
, “Second Moment Closure for the Near-wall Sublayer: Development and Application
,” AIAA J.
, 27
, pp. 1319
–1325
.15.
Fukushima, N., and Kasagi, N., 2001, “The Effect of Walls on Turbulent Flow and Temperature Fields,” Proc. Turbulent Heat Transfer 3, Anchorage, AK, U.S.A., (CDROM).
Copyright © 2003
by ASME
You do not currently have access to this content.