A higher order version of the generalized gradient diffusion hypothesis (HOGGDH) for turbulent heat flux is applied to predict heat transfer in a square-sectioned U-bend duct. The flow field turbulence models coupled with are a cubic nonlinear eddy viscosity model and a full second moment closure. Both of them are low Reynolds number turbulence models. The benefits of using the HOGGDH heat flux model are presented through the comparison with the standard GGDH.

1.
Chang
,
S. M.
,
Humphrey
,
J. A. C.
, and
Modavi
,
A.
,
1983
, “
Turbulent Flow in a Strongly Curved U-bend and Downstream Tangent of Square Cross-Sections
,”
Physico Chemical Hydrodynamics
,
4-3
, pp.
243
269
.
2.
Johnson
,
R. W.
, and
Launder
,
B. E.
,
1985
, “
Local Nusselt Number and Temperature Field in Turbulent Flow Through a Heated Square-Sectioned U-bend
,”
Int. J. Heat Fluid Flow
,
6
, pp.
171
180
.
3.
Iacovides
,
H.
, and
Launder
,
B. E.
,
1995
, “
Computational Fluid Dynamics Applied to Internal Gas-Turbine Blade Cooling: a Review
,”
Int. J. Heat Fluid Flow
,
16
, pp.
454
470
.
4.
Iacovides
,
H.
,
Launder
,
B. E.
, and
Li
,
H.-Y.
,
1996
, “
Application of a Reflection-free DSM to Turbulent Flow and Heat Transfer in a Square-Sectioned U-Bend
,”
Exp. Therm. Fluid Sci.
,
13
, pp.
419
429
.
5.
Craft
,
T. J.
,
Launder
,
B. E.
, and
Suga
,
K.
,
1997
, “
Prediction of Turbulent Transitional Phenomena With a Nonlinear Eddy-Viscosity Model
,”
Int. J. Heat Fluid Flow
,
18
, pp.
15
28
.
6.
Chen
,
W. L.
,
Lien
,
F. S.
, and
Leschziner
,
M. A.
,
1998
, “
Computational Prediction of Flow Around Highly Loaded Compressor-Cascade Blades with Non-Linear Eddy Viscosity Models
,”
Int. J. Heat Fluid Flow
,
19
, pp.
307
319
.
7.
Barakos
,
G.
, and
Drikakis
,
D.
,
2000
, “
Investigation of Nonlinear Eddy-Viscosity Turbulence Models in Shock/Boundary-Layer Interaction
,”
AIAA J.
,
38
, pp.
461
469
.
8.
Suga
,
K.
,
Nagaoka
,
M.
,
Horinouchi
,
N.
,
Abe
,
K.
, and
Kondo
,
Y.
,
2001
, “
Application of a Three Equation Cubic Eddy Viscosity Model to 3-D Turbulent Flows by the Unstructured Grid Methods
,”
Int. J. Heat Fluid Flow
,
22
, pp.
259
271
.
9.
Launder
,
B. E.
,
1988
, “
On the Computation of Convective Heat Transfer in Complex Turbulent Flows
,”
ASME J. Heat Transfer
, ,
110
, pp.
1112
1128
.
10.
Daly
,
B. J.
, and
Harlow
,
F. H.
,
1970
, “
Transport Equation in Turbulence
,”
Phys. Fluids
,
13
, pp.
2634
2649
.
11.
Rogers
,
M. M.
,
Mansour
,
N. N.
, and
Reynolds
,
W. C.
,
1989
, “
An Algebraic Model for the Turbulent Flux of a Passive Scalar
,”
J. Fluid Mech.
,
203
, pp.
77
101
.
12.
So
,
R. M. C.
, and
Sommer
,
T. P.
,
1996
, “
An Explicit Algebraic Heat-Flux Model for the Temperature Field
,”
Int. J. Heat Mass Transf.
,
39
, pp.
455
465
.
13.
Suga
,
K.
, and
Abe
,
K.
,
2000
, “
Nonlinear Eddy Viscosity Modeling for Turbulence and Heat Transfer Near Wall and Shear-Free Boundaries
,”
Int. J. Heat Fluid Flow
,
21
, pp.
37
48
.
14.
Launder
,
B. E.
, and
Shima
,
N.
,
1989
, “
Second Moment Closure for the Near-wall Sublayer: Development and Application
,”
AIAA J.
,
27
, pp.
1319
1325
.
15.
Fukushima, N., and Kasagi, N., 2001, “The Effect of Walls on Turbulent Flow and Temperature Fields,” Proc. Turbulent Heat Transfer 3, Anchorage, AK, U.S.A., (CDROM).
You do not currently have access to this content.