A theoretical model has been developed to predict the thermal performance of inert, direct-fired, woven-metal fiber-matrix porous radiant burner. The local chemical heat release was modeled by a detailed mechanism, and convection heat transfer between the gas and the solid phases in the burner was described by an empirical heat transfer coefficient. The solid matrix was modeled as a gray medium, and the discrete ordinates method was used to solve the radiative transfer equation to calculate the local radiation source/sink in the energy equation for the solid phase. The fully coupled nature of the calculations without external specification of flame location represents a key advance over past efforts towards modeling of porous radiant burners, because for a given mass flow rate the actual heat loss from the flame determines its position and is not a free parameter. The calculated results for the burner surface temperature, the gas exhaust temperature and the radiation efficiency for a single layer Fecralloy burner were compared with experimental data from this laboratory and reasonable agreement was obtained for a range of operating conditions.

1.
Viskanta, R., 1996, “Interaction of Combustion and Heat Transfer in Porous Inert Media,” Transport Phenomena in Combustion, S. H. Chan, ed., Taylor & Francis, Washington, DC, pp. 64–87.
2.
Howell
,
J. R.
,
Hall
,
M. J.
, and
Ellzey
,
J. L.
,
1996
, “
Combustion of Hydrocarbon Fuels Within Porous Media
,”
Prog. Energy Combust. Sci.
,
22
, pp.
121
145
.
3.
Weinberg, R. J., 1986, “Combustion in Heat Recirculating Rurners,” Advanced Combustion Methods,” F. J. Weinberg, ed., Academic Press, London, pp. 183–236.
4.
Hsu
,
P-F.
,
Evans
,
W. D.
, and
Howell
,
J. R.
,
1993
, “
Experimental and Numerical Study of Premixed Combustion Within Homogeneous, Porous Ceramics
,”
Combust. Sci. Technol.
,
90
, pp.
149
172
.
5.
Mital
,
R.
,
Gore
,
J. P.
, and
Viskanta
,
R.
,
1997
, “
A Study of the Structure of Submerged Reaction Zone in Porous Ceramic Radiant Burners
,”
Combust. Flame
,
111
, pp.
175
184
.
6.
Viskanta
,
R.
, and
Gore
,
J. P.
, 2000, “Overview of Cellular Ceramics Based Porous Radiant Burners for Supporting Combustion,” International Journal on Environmental Combustion Technology, 1, pp. 167–203.
7.
Golombok
,
M.
,
Prothero
,
A.
,
Shirvill
,
L. C.
, and
Small
,
L. M.
,
1991
, “
Surface Combustion in metal Fibre Burners
,”
Combust. Sci. Technol.
,
77
, pp.
203
223
.
8.
Golombok, M., and Shirvill, L. C., 1990, “Radiation Characteristics of Surface Combustion Burners,” Proceedings of EUROTHERM No. 17, pp. 7–13.
9.
Sathe
,
S. B.
,
Peck
,
R. E.
, and
Tong
,
T. W.
,
1990
, “
A Numerical Analysis of Heat Transfer and Combustion in Porous Radiant Burners
,”
Int. J. Heat Mass Transf.
,
33
, pp.
1331
1338
.
10.
Sathe
,
S. B.
,
Peck
,
R. E.
, and
Tong
,
T. W.
,
1990
, “
Flame Stabilization and Multimode Heat Transfer in Inert Porous Media: a Numerical Study
,”
Combust. Sci. Technol.
,
70
, pp.
93
109
.
11.
Tong
,
T. W.
, and
Sathe
,
S. B.
,
1991
, “
Heat Transfer Characteristics of Porous Radiant Burners
,”
ASME J. Heat Transfer
,
113
, pp.
423
428
.
12.
Andersen
,
F.
,
1992
, “
Heat Transfer Model for Fiber Burners
,”
Prog. Energy Combust. Sci.
,
18
, pp.
1
12
.
13.
Hsu
,
P-F.
, and
Matthews
,
R. D.
,
1993
, “
The Necessity of Using Detailed Kinetics in Models for Premixed Combustion Within Porous Media
,”
Combust. Flame
,
93
, pp.
457
466
.
14.
Rumminger, M. D., Dibble, R. W., Heberle, N. H., and Grossley, D. R., 1996, “Gas Temperature Above a Porous Radiant Burner: Comparison of Measurements and Model Predictions,” Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp. 1755–1762.
15.
Henneke
,
M. R.
, and
Ellzey
,
J. L.
,
1999
, “
Modeling of Filtration Combustion in a Packed Bed
,”
Combust. Flame
,
117
, pp.
832
846
.
16.
Bowman, C., Hanson, R., Davidson, D. (Jr.), Lissianski, V., Smith, G., Golden, D., Frenklach, M., and Goldenberg, M., GRI-MECH 2.11, http://me.berkeley.edu/grimech.
17.
Leonardi, S. A., 2000, “Partially-Premixed Combustion in Porous Radiant Burners,” Ph.D. thesis, Purdue University, W. Lafayette, IN.
18.
Leonardi, S. A., Gore, J. P., and Viskanta, R., 2001, “Experimental Investigation of Partially-Premixed Combustion in a Novel Porous Radiant Burner, Proceedings of the 2001 National Heat Transfer Conference, Bergman, T. L. and Panchal, C. B., eds., ASME, New York, 1, pp. 915–921.
19.
Leonardi
,
S. A.
,
Viskanta
,
R.
, and
Gore
,
J. P.
,
2002
, “
Radiation and Thermal Performance Measurements of Metal Fiber Burner
,”
J. Quant. Spectrosc. Radiat. Transf.
,
73
, pp.
491
501
.
20.
Kee, R., Grcar, J. F., Smooke, M., and Miller, J., 1985, “A Fortran Program for Modeling Steady Laminar One-Dimensional Premixed Flames,” Sandia National Laboratory Report SAND85-8240.
21.
Kee, R. J., Miller, J., and Jefferson, T., 1980, “CHEMKIN: a General Purpose, Problem Independent, Transportable Fortran, Chemical Kinetic Program Package,” Sandia National Laboratory Report SAND 80-8003.
22.
Kee, R., Warnatz, J., and Miller, J., 1983, “A Fortran Computer Program Package for the Evaluation of Gas-Phase Viscosities, Conductivities and Diffusion Coefficients,” Sandia National Laboratory Technical Report SAND83-8209.
23.
Mathur
,
S.
,
Tondon
,
P. K.
, and
Saxena
,
S. C.
,
1967
, “
Thermal Conductivity of Binary, Ternary and Quaternary Mixtures of Rare Gases
,”
Mol. Phys.
,
12
, pp.
569
579
.
24.
Modest, M. F., 1993, Radiative Heat Transfer, McGraw-Hill Book Co., New York.
25.
Ji, J., Gore, J. P., Sivathanu, Y. R., and Lim, J., 2000, “Fast Infrared Array Spectrometer Used for Radiation Flame Measurements of Lean Premixed Flames,” paper presented at the 35th National Heat Transfer Conference, June 10–12, 2001, Anaheim, CA. (A copy of the paper can be obtained from the authors.)
26.
Grosshandler, W. L., 1993, “RADCAL,” Technical Report NIST-11402, National Institute of Science and Technology, Gaithersburg, MD.
27.
Soufiani
,
A.
, and
Taine
,
J.
,
1997
, “
High Temperature Gas Radiative Property Parameters of Statistical Narrow-Band Model for H2O, CO2 and CO, and Correlated K Model for H2O and CO2,
Int. J. Heat Mass Transf.
,
40
, pp.
987
991
.
28.
Ji
,
J.
,
Sivathanu
,
Y. R.
, and
Gore
,
J. P.
, 2000, “Thermal Radiation Properties of Turbulent Lean Premixed Methane Air Flames,” Proceedings of the Combustion Institute, 28, pp. 391–398.
29.
Turns, S. E., 1996, An Introduction to Combustion, McGraw-Hill Book Co., New York.
30.
Singh, P., 1997, personal communication, Purdue University, W. Lafayette, IN.
You do not currently have access to this content.