To estimate parameters from experiments requires the specification of models and each model will exhibit different degrees of sensitivity to the parameters sought. Although experiments can be optimally designed without regard to the experimental data actually realized, the precision of the estimated parameters is a function of the sensitivity and the statistical characteristics of the data. The precision is affected by any correlation in the data, either auto or cross, and by the choice of the model used to estimate the parameters. An informative way of looking at an experiment is by using the concept of Information. An analysis of an actual experiment is used to show how the information, the optimal number of sensors, the optimal sampling rates, and the model are affected by the statistical nature of the signals. The paper demonstrates that one must differentiate between the data needed to specify the model and the precision in the estimated parameters provided by the data.

1.
Gans, P., 1992, Data Fitting in the Chemical Sciences, J. Wiley and Sons, New York, NY.
2.
Blackwell, B. F., Gill, W., Dowding, K. J., and Easterling, R. G., 2000, “Uncertainty Estimation in the Determination of Thermal Conductivity of 304 Stainless Steel,” Proc. IMECE 2000, HTD Vol. 366-2, ASME, New York, pp. 147–154.
3.
Beck, J. V., and Arnold, K. J., 1977, Parameter Estimation in Engineering and Science, J. Wiley and Sons, New York, NY.
4.
Beck
,
J. V.
,
Blackwell
,
B.
, and
Haji-Sheikh
,
A.
,
1996
, “
Comparison of Some Inverse Heat Conduction Methods Using Experimental Data
,”
Int. J. Heat Mass Transf.
,
39
, pp.
3649
3657
.
5.
Coleman, H. W., and Steele Jr., W. G., 1989, Experimentation and Uncertainty Analysis for Engineers, J. Wiley and Sons, New York, NY.
6.
Papoulis, A., 1991, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, NY.
7.
Stark, H., and Woods, J. W., 1994, Probability, Random Processes and Estimation Theory for Engineers, Prentice Hall, New York, NY.
8.
Sivia, D. S., 1996, Data Analysis, A Bayesian Tutorial, Clarendon Press, Oxford, England.
9.
Lee, P. M., 1997, Bayesian Statistics, J. Wiley and Sons, New York, NY.
10.
Sorenson H. W., 1980, Parameter Estimation: Principles and Problems, Marcel Dekker, Inc., New York, NY.
11.
Cowan, G., 1998, Statistical Data Analysis, Oxford Press, Oxford, England.
12.
Emery
,
A. F.
, and
Nenarokomov
,
A. V.
,
1998
, “
Optimal Experiment Design
,”
Meas. Sci. Technol.
,
9
, pp.
864
876
.
13.
Emergy
,
A. F.
, and
Fadale
,
T. D.
,
1996
, “
Design of Experiments Using Uncertainty Information
,”
ASME J. Heat Transfer
,
118
, pp.
532
538
.
14.
Savin
,
N. E.
, and
White
,
K. J.
,
1978
, “
Estimation and Testing for Functional Form and Autocorrelation—A Simultaneous Approach
,”
J. Econometr.
,
8
, pp.
1
12
.
15.
Bendat, J. S., and Piersol, A. G., 2000, Random Data: Analysis and Measurement Procedures, J. Wiley and Sons, New York, NY.
16.
Dhrymes, P. J., 1981, Distributed Lags: Problems of Estimation and Formulation, North-Holland Publ., New York, NY.
17.
Johnson, D. E., 1998, Applied Multivariate Methods for Data Analysis, Duxbury Press, Brooks-Cole Publ., Pacific Grove, CA.
18.
Emery
,
A. F.
,
2001
, “
Using the Concept of Information to Optimally Design Experiments With Uncertain Parameters
,”
ASME J. Heat Transfer
,
123
, pp.
593
600
.
You do not currently have access to this content.