Recent experimental studies of evaporation in microchannels have shown that local flow-boiling coefficients are almost independent of vapor quality, weakly dependent on mass flux, moderately dependent on evaporating pressure, and strongly dependent on heat flux. In a conventional (macrochannel) geometry, such trends suggest nucleate boiling as the dominant heat transfer mechanism. In this paper, we put forward a simple new heat transfer model based on the hypothesis that thin-film evaporation into elongated bubbles is the important heat transfer mechanism in these flows. The new model predicts the above trends and quantitatively predicts flow-boiling coefficients for experimental data with several fluids. The success of this new model supports the idea that thin-film evaporation into elongated bubbles is the important heat transfer mechanism in microchannel evaporation. The model provides a new tool for the study of such flows, assists in understanding the heat transfer behavior, and provides a framework for predicting heat transfer.

1.
Shannon, M. A., Philpott, M. L., Miller, N. R., Bullard, C. W., Beebe, D. J., Jacobi, A. M., Hrnjak, P. S., Saif, T., Aluru, N., Sehitoglu, H., Rockett, A., and Economy, J., 1999, “Integrated Mesoscopic Cooler Circuits (IMCCs),” in Proceedings of the ASME Advanced Energy Systems Division, S. M. Aceves, S. Garimella, and R. B. Peterson, eds., ASME AES-Vol. 39, ASME, New York, pp. 75–82.
2.
Kew
,
P.
, and
Conrwell
,
K.
,
1997
, “
Correlations for the Prediction of Boiling Heat Transfer in Small Diameter Channels
,”
Appl. Therm. Eng.
,
17
, pp.
705
715
.
3.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 1: Development of a Diabatic Two-Phase Flow Pattern Map
,”
J. Heat Transfer
,
120
, pp.
140
147
.
4.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 2: New Heat Transfer Data for Five Refrigerants
,”
J. Heat Transfer
,
120
, pp.
148
155
.
5.
Kattan
,
N.
,
Thome
,
J. R.
, and
Favrat
,
D.
,
1998
, “
Flow Boiling in Horizontal Tubes. Part 3: Development of a New Heat Transfer Model Based on Flow Patterns
,”
J. Heat Transfer
,
120
, pp.
156
165
.
6.
Mehendale
,
S. S.
,
Jacobi
,
A. M.
, and
Shah
,
R. K.
,
2000
, “
Fluid Flow and Heat Transfer at Micro- and Meso-Scales with Application to Heat Exchanger Design
,”
Appl. Mech. Rev.
,
53
(
7
), pp.
175
193
.
7.
Gad-el-Hak
,
M.
,
1999
, “
The Fluid Mechanics of Microdevices—The Freeman Scholar Lecture
,”
J. Fluid Mech.
,
121
, pp.
5
33
.
8.
Tran
,
T. N.
,
Wambsganss
,
M. W.
, and
France
,
D. M.
,
1996
, “
Small Circular and Rectangular Channel Boiling with Two Refrigerants
,”
Int. J. Multiphase Flow
,
22
, pp.
485
498
.
9.
Wambsganss
,
M. W.
,
France
,
D. M.
,
Jendrzejczyk
,
J. A.
, and
Tran
,
T. N.
,
1993
, “
Boiling Heat Transfer in a Horizontal Small-Diameter Tube
,”
J. Heat Transfer
,
115
, pp.
963
972
.
10.
Zhao
,
Y.
,
Molki
,
M.
,
Ohadi
,
M. M.
, and
Dessiatoun
,
S. V.
,
2000
, “
Flow Boiling of CO2 in Microchannels
,”
ASHRAE Trans.
,
106
(
1
), pp.
437
445
.
11.
Mehendale
,
S. S.
, and
Jacobi
,
A. M.
,
2000
, “
Evaporative Heat Transfer in Mesoscale Heat Exchangers
,”
ASHRAE Trans.
,
106
(
1
), pp.
446
452
.
12.
Bao
,
Z. Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2000
, “
Flow Boiling Heat Transfer of Freon R11 and HCFC123 in Narrow Passages
,”
Int. J. Heat Mass Transf.
,
43
, pp.
3347
3358
.
13.
Bao
,
Z. Y.
,
Fletcher
,
D. F.
, and
Haynes
,
B. S.
,
2000
, “
Experimental Study of Gas-Liquid Flow in Narrow Conduit
,”
Int. J. Heat Mass Transf.
,
43
, pp.
2313
2324
.
14.
Cooper
,
M. G.
,
1984
, “
Heat Flow Rates in Saturated Nucleate Pool Boiling—A Wide-Ranging Examination Using Reduced Properties
,”
Adv. Heat Transfer
,
16
, pp.
157
239
.
15.
Baird, J. R., Bao, Z. Y., Fletcher, D. F., and Haynes, B. S., 2000, “Local Flow Boiling Heat Transfer Coefficients in Narrow Conduits,” Boiling 2000: Phenomena and Engineering Applications, A. Bar-Cohen, ed., Anchorage, Alaska, Apr 30–May 5, 2, pp. 447–466.
16.
Plesset
,
M.
, and
Zwick
,
S. A.
,
1954
, “
The Growth of Vapor Bubbles in Superheated Liquids
,”
J. Appl. Phys.
,
25
, pp.
493
500
.
17.
Collier, J. G., and Thome, J. R., 1994, Convective Boiling and Condensation, Third edition, Oxford Science Publications, Oxford, p. 543.
18.
Moriyama
,
K.
, and
Inoue
,
A.
,
1996
, “
Thickness of the Liquid Film Formed by a Growing Bubble in a Narrow Gap Between Two Horizontal Plates
,”
J. Heat Transfer
,
118
, pp.
132
139
.
You do not currently have access to this content.