Molecular dynamics simulations are used to examine how thermal transport is affected by the presence of one or more interfaces. Parameters such as film thickness, the ratio of respective material composition, the number of interfaces per unit length, and lattice strain are considered. Results indicate that for simple nanoscale strained heterostructures containing a single interface, the effective thermal conductivity may be less than half the value of an average of the thermal conductivities of the respective unstrained thin films. Increasing the number of interfaces per unit length, however, does not necessarily result in a corresponding decrease in the effective thermal conductivity of the superlattice.

1.
Mahan
,
G.
,
Sales
,
B.
, and
Sharp
,
J.
,
1997
, “
Thermoelectric materials: New Approaches to an Old Problem
,”
Phys. Today
,
50
, pp.
42
47
.
2.
Dresselhaus
,
M. S.
,
Dresselhaus
,
G.
,
Sun
,
X.
,
Zhang
,
Z.
,
Cronin
,
S. B.
,
Koga
,
T.
,
Ying
,
J. Y.
, and
Chen
,
G.
,
1999
, “
The Promise of Low-Dimensional Thermoelectric Materials
,”
Microscale Thermophys. Eng.
,
3
, pp.
89
100
.
3.
Yao
,
T.
,
1987
, “
Thermal Properties of AlAs/GaAs Superlattices
,”
Appl. Phys. Lett.
,
51
, pp.
1798
1800
.
4.
Weisbuch, C., and Vinter, B., 1991, Quantum Semiconductor Structures, Academic Press, Boston, MA.
5.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Physica B
,
220
, pp.
699
701
.
6.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Ruf
,
T.
,
Cardona
,
M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal Conductivity Measurements of GaAs/AlAs Superlattices Using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp.
8105
8113
.
7.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp.
2957
2959
.
8.
Yamasaki, I., Yamanaka, R., Mikami, M., Sonobe, H., Mori, Y., and Sasaki, T., 1998, “Thermoelectric Properties of Bi2Te3/Sb2Te3 Superlattice Structures,” Proceedings 17th International Thermoelectrics Conference ICT ’98, IEEE, CA, pp. 210–213.
9.
Venkatasubramanian
,
R.
,
2000
, “
Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
, pp.
3091
3097
.
10.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Tien, C. L., LaBounty, C., Fan, X., Zeng, G., Abraham, P., Bowers, J. E., Shakouri, A., and Croke, E. T., 2001, “Thermal Conductivity of Si/SiGe Superlattices,” Proceedings IMECE ’01, ASME, New York.
11.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
, pp.
2761
2763
.
12.
Rosenblum
,
I.
,
Adler
,
J.
,
Brandon
,
S.
, and
Hoffman
,
A.
,
2000
, “
Molecular-Dynamics Simulation of Thermal Stress at the (100) Diamond/Substrate Interface: Effect of Film Continuity
,”
Phys. Rev. B
,
62
, pp.
2920
2936
.
13.
Borca-Tasciuc, T., Achimov, D., Liu, W. L., Chen, G., Lin, C. H., Delaney, A., and Pei, S. S., 2001, “Thermal Conductivity of InAs/AlSb Superlattices,” Proceedings International Conference on Heat Transfer and Transport Phenomena in Microscale, Banff, Canada, Begell House, New York, pp. 369–371.
14.
Borca-Tasciuc, T., Liu, W. L., Liu, J. L., Zeng, Song, D. W., Moore, C. D., Chen, G., Wang, K. L., Goorsky, M. S., Radetic, T., Gronsky, R., Sun, X., and Dresselhaus, M. S., 1999, “Thermal Conductivity of Si/Ge Superlattices,” Proceedings 18th International Conference on Thermoelectrics ICT ’99 IEEE, CA.
15.
Rieger
,
M. M.
, and
Vogl
,
P.
,
1993
, “
Electronic-Band Parameters in Strained Si(1-x)Ge(x) Alloys on Si(1-y)Ge(y) Substrates
,”
Phys. Rev. B
,
48
, pp.
14276
14287
.
16.
Tserbak
,
C.
,
Polataoglou
,
H. M.
, and
Theodorou
,
G.
,
1993
, “
Unified Approach to the Electronic-Structure of Strained Si/Ge Superlattices
,”
Phys. Rev. B
,
47
, pp.
7104
7124
.
17.
Ghanbari
,
R. A.
,
White
,
J. D.
,
Fasol
,
G.
,
Gibbings
,
C. J.
, and
Tuppen
,
C. G.
,
1990
, “
Phonon Frequencies for Si-Ge Strained Layer Superlattices Calculated in a Three-Dimensional Model
,”
Phys. Rev. B
,
42
, pp.
7033
7041
.
18.
Qteish
,
A.
, and
Molinari
,
E.
,
1990
, “
Interplanar Forces and Phonon Spectra of Strained Si and Ge: Ab initio Calculations and Applications to Si/Ge Superlattices
,”
Phys. Rev. B
,
42
, pp.
7090
7096
.
19.
Sui
,
Z.
, and
Herman
,
I. P.
,
1993
, “
Effect of Strain on Phonons in Si, Ge, and Si/Ge Heterostructures
,”
Phys. Rev. B
,
48
, pp.
17938
17953
.
20.
Little
,
W. A.
,
1959
, “
The Transport of Heat Between Dissimilar Solids at Low Temperatures
,”
Can. J. Phys.
,
37
, pp.
334
349
.
21.
Stoner
,
R. J.
, and
Maris
,
H. J.
,
1993
, “
Kapitza Conductance and Heat Flow Between Solids at Temperatures From 50 to 300 K
,”
Phys. Rev. B
,
48
, pp.
16373
16387
.
22.
Tamura
,
S.
,
Tanaka
,
Y.
, and
Maris
,
H. J.
,
1999
, “
Phonon Group Velocity and Thermal Conduction in Superlattices
,”
Phys. Rev. B
,
60
, pp.
2627
2630
.
23.
Tamura
,
S.
,
Hurley
,
D. C.
, and
Wolfe
,
J. P.
,
1988
, “
Acoustic Phonon Propagation in Superlattices
,”
Phys. Rev. B
,
38
, pp.
1427
1449
.
24.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
, pp.
927
930
.
25.
Narayanamurti
,
V.
,
Stormer
,
H. L.
,
Chin
,
M. A.
,
Gossard
,
A. C.
, and
Wiegmann
,
W.
,
1979
, “
Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter
,”
Phys. Rev. Lett.
,
43
, pp.
2012
2016
.
26.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
ASME J. Heat Transfer
,
121
, pp.
945
953
.
27.
Swartz
,
E. T.
, and
Pohl
,
R. O.
,
1987
, “
Thermal Resistance at Interfaces
,”
Appl. Phys. Lett.
,
51
, pp.
2200
2202
.
28.
Balandin
,
A.
, and
Wang
,
K. L.
,
1998
, “
Significant Decrease of the Lattice Thermal Conductivity Due to Phonon Confinement in a Free-Standing Semiconductor Quantum Well
,”
Phys. Rev. B
,
58
, pp.
1544
1549
.
29.
Chen
,
G.
,
1997
, “
Size and Interface Effects on Thermal Conductivity of Superlattices and Periodic Thin-Film Structures
,”
ASME J. Heat Transfer
,
119
, pp.
220
229
.
30.
Chen
,
G.
,
1998
, “
Thermal Conductivity and Ballistic-Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
, pp.
14958
14973
.
31.
Peterson
,
R. B.
,
1994
, “
Direct Simulation of Phonon-Mediated Heat Transfer in a Debye Crystal
,”
ASME J. Heat Transfer
,
116
, pp.
815
1994
.
32.
Mazumdar
,
S.
, and
Majumdar
,
A.
,
2001
, “
Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization
,”
ASME J. Heat Transfer
,
123
, pp.
749
759
.
33.
Liang
,
X. G.
, and
Shi
,
B.
,
2000
, “
Two-Dimensional Molecular Dynamics Simulation of the Thermal Conductance of Superlattices
,”
Mater. Sci. Eng., A
,
292
, pp.
198
202
.
34.
Volz
,
S.
,
Saulnier
,
J. B.
,
Chen
,
G.
, and
Beauchamp
,
P.
,
2000
, “
Molecular Dynamics of Heat Transfer in Si/Ge Superlattices
,”
High Temp.-High Press.
,
32
, pp.
709
714
.
35.
Allen, M. P., and Tildesley, D. J., 1987, Computer Simulation of Liquids, Clarendon Press, Oxford.
36.
Lukes
,
J. R.
,
Li
,
D. Y.
,
Liang
,
X. G.
, and
Tien
,
C. L.
, “
Molecular Dynamics Study of Solid Thin-Film Thermal Conductivity
,”
ASME J. Heat Transfer
,
122
, pp.
536
543
.
37.
Irving
,
J. H.
, and
Kirkwood
,
J. G.
,
1950
, “
The Statistical Mechanical Theory of Transport Processes A. The Equations of Hydrodynamics
,”
J. Chem. Phys.
,
18
, pp.
817
829
.
38.
Swope
,
W. C.
,
Anderson
,
H. C.
,
Berens
,
P. H.
, and
Wilson
,
K. R.
,
1982
, “
A Computer Simulation Method for the Calculation of Equilibrium Constants for the Formation of Physical Clusters of Molecules: Application to Small Water Clusters
,”
J. Chem. Phys.
,
76
, pp.
637
649
.
39.
Dobbs
,
E. R.
, and
Jones
,
G. O.
,
1957
, “
Theory and Properties of Solid Argon
,”
Rep. Prog. Phys.
,
20
, pp.
516
564
.
40.
Reid, R. C., Prausnitz, J. M., and Poling, B. E., 1987, The Properties of Gases and Liquids, Mc-Graw Hill, New York.
41.
White
,
G. K.
, and
Woods
,
S. B.
,
1958
, “
Thermal Conductivity of the Solidified Inert Gases: Argon, Neon and Krypton
,”
Philos. Mag.
,
3
, pp.
785
797
.
42.
Bao, Y., and Chen, G., 2000, “Lattice Dynamics Study of Anisotropy of Heat Conduction in Superlattices,” Proceedings of MRS Spring Meeting, Symposium Z, Materials Research Society, PA.
43.
Jacucci
,
G.
, and
Rahman
,
A.
,
1984
, “
Comparing the Efficiency of Metropolis Monte Carlo and Molecular Dynamics Methods for Configuration Space Sampling
,”
Nuovo Cimento
,
D4
, pp.
341
356
.
44.
Weast, R. C., Astle, M. J., and Beyer, W. H., eds., 1996, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton.
45.
Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd edition, Cambridge University Press, Cambridge.
You do not currently have access to this content.