A novel method, the Double Rays Method (DRM), is proposed to capture the discontinuous nature of the radiation intensity, in order to reduce false scattering of the discrete ordinates method (DOM). Numerical tests demonstrate that the DRM successfully removes false scattering in all the two-dimensional test problems discussed in this paper. The effect of false scattering on the computational results in two-dimensional situations is investigated with the DRM. False scattering plays a double role: when the boundary emits radiation in a limited number of directions, or when the irradiation comes from a limited number of directions, it produces a smeared intensity field and radiative heat flux distribution, and thus must be removed. In the case of diffuse boundary, however, false scattering plays a useful role and thus should be retained.

1.
Fiveland
,
W. A.
,
1987
, “
Discrete Ordinate Methods for Radiative Heat Transfer in Isotropically and Anisotropically Scattering Media
,”
ASME J. Heat Transfer
,
109
, pp.
809
812
.
2.
Truelove
,
J. S.
,
1987
, “
Discrete-Ordinates Solutions of the Radiative Transport Equation
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
1048
1051
.
3.
Fiveland, W. A., 1991, “The Selection of Discrete Ordinate Quadrature Sets for Anisotropic Scattering,” in Fundamental of Radiation Heat Transfer, ASME HTD-Vol. 160, ASME, New York, pp. 89–96.
4.
El Wakil, N., and Sacadura, J. F., 1992, “Some Improvements of the Discrete Ordinates Method for the Solution of the Radiative Transport Equation in Multidimensional Anisotropically Scattering Media,” in Developments of Radiative Heat Transfer, ASME HTD-Vol. 203, ASME, New York, pp. 119–127.
5.
Thurgood
,
C. P.
,
Pollard
,
A.
, and
Becker
,
H. A.
,
1995
, “
The TN Quadrature Set for the Discrete Ordinate Method
,”
ASME J. Heat Transfer
,
117
(
4
), pp.
1068
1070
.
6.
Koch
,
R.
,
Krebs
,
W.
,
Wittig
,
S.
, and
Viskanta
,
R.
,
1995
, “
Discrete Ordinates Quadrature Scheme for Multidimensional Radiative Transfer
,”
J. Quant. Spectrosc. Radiat. Transf.
,
53
(
4
), pp.
353
372
.
7.
Li
,
B.-W.
,
Yao
,
Q.
,
Cao
,
X.-Y.
, and
Cen
,
K.-F.
,
1998
, “
A New Discrete Ordinate Quadrature Scheme for Three-Dimensional Radiative Heat Transfer
,”
ASME J. Heat Transfer
,
120
(
2
), pp.
514
518
.
8.
Liu
,
F.
,
Becker
,
H. A.
, and
Polland
,
A.
,
1996
, “
Spatial Differencing Schemes of the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
30
(
1
), pp.
23
43
.
9.
Cheong
,
K.-B.
, and
Song
,
T.-H.
,
1997
, “
An Alternative Discrete Ordinates Method With Interpolation and Source Differencing for Two-Dimensional Radiative Transfer Problem
,”
Numer. Heat Transfer, Part B
,
32
(
1
), pp.
107
125
.
10.
Pessoa-Filho
,
J. B.
, and
Thynell
,
S. T.
,
1997
, “
An Approximate Solution to Radiative Transfer in Two-Dimensional Rectangular Enclosures
,”
ASME J. Heat Transfer
,
119
(
4
), pp.
738
745
.
11.
Sakami
,
M.
, and
Charrette
,
A.
,
1998
, “
A New Differencing Scheme for the Discrete Ordinates in Complex Geometry
,”
Rev. Gen. Therm.
,
37
(
3
), pp.
440
449
.
12.
Mohamad
,
A. A.
,
1998
, “
Local Analytical Discrete Ordinate Method for the Solution of the Radiative Transfer Equation
,”
Int. J. Heat Mass Transf.
,
39
(
9
), pp.
1859
1864
.
13.
Fiterman
,
A.
, and
Ben-Zvi
,
R.
,
1999
, “
Dots: Pseudo-Time-Stepping Solution of the Discrete Equations
,”
Numer. Heat Transfer, Part B
,
35
(
1
), pp.
163
183
.
14.
Selcuk
,
N.
, and
Kirbas
,
G.
,
2000
, “
The Method of Lines Solution of the Discrete Ordinates Method for Radiative Heat Transfer in Enclosures
,”
Numer. Heat Transfer, Part B
,
37
(
1
), pp.
107
125
.
15.
Kim
,
Il-K.
, and
Kim
,
W.-D.
,
2001
, “
A Hybrid Spatial Differencing Schemes for Discrete Ordinates Method in 2D Rectangular Enclosures
,”
Int. J. Heat Mass Transf.
,
4
(
4
), pp.
575
586
.
16.
Raithby
,
G. D.
, and
Chui
,
E. H.
,
1990
, “
A Finite-Volume Method for Predicting a Radiative Heat Transfer in Enclosures with Participating Media
,”
ASME J. Heat Transfer
,
112
(
2
), pp.
415
423
.
17.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1994
, “
Finite-Volume Method for Radiation Heat Transfer
,”
J. Thermophys. Heat Transfer
,
8
(
3
), pp.
419
425
.
18.
Chai
,
J. C.
,
Lee
,
H. S.
, and
Patankar
,
S. V.
,
1993
, “
Ray Effect and False Scattering in the Discrete Ordinates Method
,”
Numer. Heat Transfer, Part B
,
24
(
2
), pp.
373
389
.
19.
Ramankutty
,
M. A.
, and
Crosbie
,
A. L.
,
1997
, “
Modified Discrete Ordinates Solution of Radiative Transfer in Two-Dimensional Rectangular Enclosures
,”
J. Quant. Spectrosc. Radiat. Transf.
,
57
, pp.
107
140
.
20.
Baek
,
S. W.
,
Byun
,
D. Y.
, and
Kang
,
S. J.
,
2000
, “
The Combined Monte-Carlo and Finite-Volume Method for Radiation in a Two-Dimensional Irregular Geometry
,”
Int. J. Heat Mass Transf.
,
43
(
13
), pp.
2337
2344
.
21.
Thynell
,
S. T.
,
1998
, “
Discrete-Ordinates Method in Radiative Heat Transfer
,”
Int. J. Eng. Sci.
,
35
(
12–14
), pp.
1651
1675
.
22.
Crosbie
,
A. L.
, and
Schrenker
,
R. G.
,
1984
, “
Radiative Transfer in a Two-Dimensional Rectangular Medium Exposed to Diffuse Radiation
,”
J. Quant. Spectrosc. Radiat. Transf.
,
31
(
4
), pp.
339
372
.
23.
Thynell
,
S. T.
, and
O¨zisik
,
N. N.
,
1987
, “
Radiation Transfer in Isotropically Scattering, Rectangular Enclosures
,”
J. Thermophys. Heat Transfer
,
1
(
1
), pp.
69
76
.
24.
Chai
,
J. C.
,
Patankar
,
S. V.
, and
Lee
,
H. S.
,
1994
, “
Evaluation of Spatial Differencing Practices for the Discrete Ordinates Method
,”
J. Thermophys. Heat Transfer
,
8
(
1
), pp.
140
144
.
You do not currently have access to this content.