The NAPPLE algorithm for incompressible viscous flow on Cartesian grid system is extended to nonorthogonal curvilinear grid system in this paper. A pressure-linked equation is obtained by substituting the discretized momentum equations into the discretized continuity equation. Instead of employing a velocity interpolation such as pressure-weighted interpolation method (PWIM), a particular approximation is adopted to circumvent the checkerboard error such that the solution does not depend on the under-relaxation factor. This is a distinctive feature of the present method. Furthermore, the pressure is directly solved from the pressure-linked equation without recourse to a pressure-correction equation. In the use of the NAPPLE algorithm, solving the pressure-linked equation is as simple as solving a heat conduction equation. Through two well-documented examples, performance of the NAPPLE algorithm is validated for both buoyancy-driven and pressure-driven flows.

1.
Lee
,
S. L.
, and
Lin
,
D. W.
,
1997
, “
Transient Conjugate Heat Transfer on a Naturally Cooled Body of Arbitrary Shape
,”
Int. J. Heat Mass Transf.
,
40
, pp.
2133
2145
.
2.
Rhie
,
C. M.
, and
Chow
,
W. L.
,
1983
, “
Numerical Study of the Turbulent Flow Past an Airfoil With Trailing Edge Separation
,”
AIAA J.
,
21
, pp.
1525
1532
.
3.
Melaaen
,
M. C.
,
1992
, “
Calculation of Fluid Flow With Staggered and Nonstaggered Curvilinear Nonorthogonal Grids—The Theory
,”
Numer. Heat Transfer, Part B
,
21B
, pp.
1
19
.
4.
Melaaen
,
M. C.
,
1992
, “
Calculation of Fluid Flow With Staggered and Nonstaggered Curvilinear Nonorthogonal Grids—A Comparison
,”
Numer. Heat Transfer, Part B
,
21B
, pp.
21
39
.
5.
Zang
,
Y.
,
Street
,
R. L.
, and
Koseff
,
J. R.
,
1994
, “
A Non-Staggered Grid, Fractional Step Method for Time-Dependent Incompressible Navier-Stokes Equations in Curvilinear Coordinates
,”
J. Comput. Phys.
,
114
, pp.
18
33
.
6.
Patankar
,
S. V.
,
1988
, “
Recent Developments in Computational Heat Transfer
,”
ASME J. Heat Transfer
,
110
, pp.
1037
1045
.
7.
Miller
,
T. F.
, and
Schmidt
,
F. W.
,
1988
, “
Use of a Pressure-Weighted Interpolation Method for the Solution of the Incompressible Navier-Stokes Equations on a Non-Staggered Grid System
,”
Numer. Heat Transfer
,
14
, pp.
213
233
.
8.
Shyy
,
W.
,
Tong
,
S. S.
, and
Correa
,
S. M.
,
1985
, “
Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System
,”
Numer. Heat Transfer
,
8
, pp.
99
113
.
9.
Braaten
,
M.
, and
Shyy
,
W.
,
1986
, “
A Study of Recirculating Flow Computation Using Body-Fitted Coordinates: Consistency Aspect and Mesh Skewness
,”
Numer. Heat Transfer
,
9
, pp.
559
574
.
10.
Peric
,
M.
,
1990
, “
Analysis of Pressure-Velocity Coupling on Nonorthogonal Grids
,”
Numer. Heat Transfer, Part B
,
17B
, pp.
63
82
.
11.
Lee
,
S. L.
, and
Tzong
,
R. Y.
,
1992
, “
Artificial Pressure for Pressure-Linked Equation
,”
Int. J. Heat Mass Transf.
,
35
, pp.
2705
2716
.
12.
Lee
,
S. L.
,
1989
, “
Weighting Function Scheme and Its Application on Multidimensional Conservation Equations
,”
Int. J. Heat Mass Transf.
,
32
, pp.
2065
2073
.
13.
Hsu
,
K.
, and
Lee
,
S. L.
,
1991
, “
A Numerical Technique for Two-Dimensional Grid Generation With Grid Control at All of the Boundaries
,”
J. Comput. Phys.
,
96
, pp.
451
469
.
14.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York, Chap. 6.
15.
Lee
,
S. L.
,
1989
, “
A Strongly Implicit Solver for Two-Dimensional Elliptical Differential Equations
,”
Numer. Heat Transfer, Part B
,
16B
, pp.
161
178
.
16.
Stone
,
H. L.
,
1968
, “
Iterative Solutions of Approximations of Multidimensional Partial Differential Equations
,”
SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal.
,
5
, pp.
530
558
.
17.
Projahn
,
U.
,
Rieger
,
H.
, and
Beer
,
H.
,
1981
, “
Numerical Analysis of Laminar Natural Convection Between Concentric and Eccentric Cylinders
,”
Numer. Heat Transfer
,
4
, pp.
131
146
.
18.
Hwang
,
Y. H.
,
1994
, “
Arbitrary Domain Velocity Analyses for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
110
, pp.
134
149
.
19.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1978
, “
An Experimental Study of Natural Convection Heat Transfer in Concentric and Eccentric Horizontal Cylindrical Annuli
,”
ASME J. Heat Transfer
,
100
, pp.
635
640
.
20.
Kuehn
,
T. H.
, and
Goldstein
,
R. J.
,
1976
, “
An Experimental and Theoretical Study of Natural Convection in the Annulus Between Horizontal Concentric Cylinders
,”
J. Fluid Mech.
,
74
, pp.
695
719
.
21.
Young
,
D. F.
, and
Tsai
,
F. Y.
,
1973
, “
Flow Characteristics in Models of Arterial Stenoses—I. Steady Flow
,”
J. Biomech.
,
6
, pp.
395
410
.
22.
Deshpande
,
M. D.
,
Giddens
,
D. P.
, and
Mabon
,
R. F.
,
1976
, “
Steady Laminar Flow Through Modeled Vascular Stenoses
,”
J. Biomech.
,
9
, pp.
165
174
.
23.
Karki, K. C., 1986, “A Calculation Procedure for Viscous Flows at All Speeds in Complex Geometries,” Ph.D. thesis, University of Minnesota.
24.
Kadja, M., 1987, “Computation of Recirculating Flow in Complex Domains With Algebraic Reynolds Stress Closure and Body Fitted Meshes,” Ph.D. thesis, University of Manchester.
25.
Liou, T. M., Chen, S. H., and Chen, L. T., 1995, “Numerical Simulation on Fluid Flow Through a Locally Constricted Tube (in Chinese),” Proceedings of the Third National Conference on Computational Fluid Dynamics, Taiwan, pp. 139–148.
You do not currently have access to this content.