Carrier gas flow in a rapid thermal chemical vapor deposition (RTCVD) reactor was studied using flow visualization and laser induced Rayleigh light scattering (RLS). The flow field consists of a downward axisymmetric jet of carrier gas impinging on a wafer which undergoes transient heating. Flow visualization results showed three stable flow regimes as the surface rose from ambient to high temperature: momentum dominated, buoyancy dominated, and a second momentum dominated regime at high temperature; each separated by unstable, chaotic flows. RLS temperature measurements provided transient gas temperature histories, documenting flow visualization results. Regions of momentum dominated, buoyancy dominated, and unstable flows were defined as a function of Grashof number, Reynolds number, pressure, and wafer temperature.

1.
Fair, R. B., 1993, Rapid Thermal Processing, Academic Press, San Diego, CA.
2.
Coltrin
,
M. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1984
, “
A Mathematical Model of the Coupled Fluid Mechanics and Chemical Kinetics in a Chemical Vapor Deposition Reactor
,”
J. Electrochem. Soc.
,
131
, pp.
425
434
.
3.
Coltrin
,
M. E.
,
Kee
,
R. J.
, and
Miller
,
J. A.
,
1988
, “
A Mathematical Model of Silicon Chemical Vapor Deposition
,”
Journal of Electrochemical Society: Solid-State Science and Technology
,
133
, pp.
1206
1213
.
4.
Jensen
,
K. F.
,
Einset
,
E. O.
, and
Fotiadis
,
D. I.
,
1991
, “
Flow Phenomena in Chemical Vapor Deposition of Thin Films
,”
Annu. Rev. Fluid Mech.
,
23
, pp.
197
232
.
5.
Evans
,
G.
, and
Greif
,
R.
,
1987
, “
A Numerical Model of the Flow and Heat Transfer in a Rotating Disk Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
109
, pp.
928
935
.
6.
Evans
,
G.
, and
Greif
,
R.
,
1989
, “
A Study of Traveling Wave Instabilities in a Horizontal Channel Flow with Applications to Chemical Vapor Deposition
,”
Int. J. Heat Mass Transf.
,
32
, pp.
895
911
.
7.
Evans
,
G.
, and
Greif
,
R.
,
1993
, “
Thermally Unstable Convection with Applications to Chemical Vapor Deposition Channel Reactors
,”
Int. J. Heat Mass Transf.
,
36
, pp.
2769
2781
.
8.
Mahajan
,
R. L.
, and
Wei
,
C.
,
1991
, “
Buoyancy, Soret, Dufour and Variable Property Effects in Silicon Epitaxy
,”
ASME J. Heat Transfer
,
113
, pp.
688
696
.
9.
Fotiadis
,
D. I.
,
Kremer
,
A. M.
,
McKenna
,
D. R.
, and
Jensen
,
K. F.
,
1987
, “
Complex Flow Phenomena in Vertical MOCVD Reactors: Effects on Deposition Uniformity and Interface Abruptness
,”
J. Cryst. Growth
,
85
, pp.
154
164
.
10.
Fotiadis
,
D. I.
,
Boekhold
,
M.
,
Jensen
,
K. F.
, and
Richter
,
W.
,
1990
, “
Flow and Heat Transfer in CVD Reactors: Comparison and Raman Temperatures and Finite Element Model Predictions
,”
J. Cryst. Growth
,
100
, pp.
577
589
.
11.
Fotiadis
,
D. I.
,
Kieda
,
S.
, and
Jensen
,
K. F.
,
1990
, “
Transport Phenomena in Vertical Reactors for Metalorganic Vapor Phase Epitaxy
,”
J. Cryst. Growth
,
102
, pp.
441
470
.
12.
Merchant
,
T. P.
,
Cole
,
J. V.
,
Knutson
,
K. L.
,
Hebb
,
J. P.
, and
Jensen
,
K. F.
,
1996
, “
A Systematic Approach to Simulating Rapid Thermal Processing Systems
,”
J. Electrochem. Soc.
143
, pp.
2035
2043
.
13.
Hebb
,
J. P.
, and
Jensen
,
K. F.
,
1996
, “
The Effect of Multilayer Patterns on Temperature Uniformity During Rapid Thermal Processing
,”
J. Electrochem. Soc.
143
, pp.
1142
1151
.
14.
Kelkar, A. S., and Mahajan, R. L., 1997, “Two and Three-Dimensional Transport Models for MOCVD Reactors: Effect of Boundary Conditions,” 1997 National Heat Transfer Conference.
15.
Mihopoulos
,
T. G.
,
Hummel
,
S. G.
, and
Jensen
,
K. F.
,
1998
, “
Simulation of Flow and Growth Phenomena in a Close-Spaced Reactor
,”
J. Cryst. Growth
195
, pp.
725
732
.
16.
Soong
,
C. Y.
,
Chyuan
,
C. H.
, and
Tzong
,
R. Y.
,
1998
, “
Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control
,”
Jpn. J. Appl. Phys., Part 1
,
37
, pp.
5823
5834
.
17.
Wang
,
C. A.
,
Groves
,
S. H.
,
Palmateer
,
S. C.
,
Wayburne
,
D. W.
, and
Brown
,
R. A.
,
1986
, “
Flow Visualization Studies for Optimization of OMVPE Reactor Design
,”
J. Cryst. Growth
,
77
, pp.
136
143
.
18.
Gadgil
,
P. N.
,
1993
, “
Optimization of a Stagnation Point Flow Reactor Design for Metalorganic Chemical Vapor Deposition by Flow Visualization
,”
J. Cryst. Growth
,
134
, pp.
302
312
.
19.
Salim
,
S.
,
Wang
,
C. A.
,
Driver
,
R. D.
, and
Jensen
,
K. F.
,
1996
, “
In situ Concentration Monitoring in a Vertical OMPVE Reactor by Fiber-Optics-Based Fourier Transform Infrared Spectroscopy
,”
J. Cryst. Growth
,
169
, pp.
443
449
.
20.
Johnson
,
E. J.
,
Hyer
,
P. V.
,
Culotta
,
P. W.
, and
Clark
,
I. O.
,
1998
, “
Evaluation of Infrared Thermography as a Diagnostic Tool in CVD Applications
,”
J. Cryst. Growth
,
187
, pp.
463
473
.
21.
Horton
,
J. F.
, and
Peterson
,
J. E.
,
1999
, “
Transient Temperature Measurements in an Ideal Gas by Laser-Induced Rayleigh Light Scattering
,”
Rev. Sci. Instrum.
,
70
, pp.
3222
3226
.
22.
Horton
,
J. F.
, and
Peterson
,
J. E.
,
2000
, “
Rayleigh Light Scattering Measurements of Transient Gas Temperature in a Rapid Chemical Vapor Deposition Reactor
,”
ASME J. Heat Transfer
,
122
, pp.
165
170
.
23.
Holman, J. P., 1994, Experimental Methods for Engineers, McGraw-Hill, Inc., New York.
24.
Van de Hulst, H. C., 1953, Light Scattering by Small Particles, Chapmann & Hall, London.
25.
Kerker, M., 1969, The Scattering of Light, Academic Press, New York.
26.
Bohren, C. F., and Huffman, D. R., 1983, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York.
27.
Pitz
,
R. W.
,
Cattolica
,
R.
,
Bobben
,
F.
, and
Talbot
,
F.
,
1976
, “
Temperature and Density in a Hydrogen-Air Flame From Rayleigh Light Scattering
,”
Combust. Flame
,
27
, pp.
313
320
.
28.
Pitz
,
W. M.
, and
Kashiwagi
,
T.
,
1984
, “
The Application of Laser-Induced Rayleigh Light Scattering to the Study of Turbulent Mixing
,”
J. Fluid Mech.
,
141
, pp.
391
429
.
29.
Behringer
,
R. P.
, and
Ahlers
,
G.
,
1982
, “
Heat Transport and Temporal Evolution of Fluid Flow Near the Rayleigh-Benard Instability in Cylindrical Containers
,”
J. Fluid Mech.
,
125
, pp.
219
258
.
You do not currently have access to this content.