This study investigates the effect of a squealer tip geometry arrangement on heat transfer coefficient and static pressure distributions on a gas turbine blade tip in a five-bladed stationary linear cascade. A transient liquid crystal technique is used to obtain detailed heat transfer coefficient distribution. The test blade is a linear model of a tip section of the GE E3 high-pressure turbine first stage rotor blade. Six tip geometry cases are studied: (1) squealer on pressure side, (2) squealer on mid camber line, (3) squealer on suction side, (4) squealer on pressure and suction sides, (5) squealer on pressure side plus mid camber line, and (6) squealer on suction side plus mid camber line. The flow condition during the blowdown tests corresponds to an overall pressure ratio of 1.32 and exit Reynolds number based on axial chord of 1.1×106. Results show that squealer geometry arrangement can change the leakage flow and results in different heat transfer coefficients to the blade tip. A squealer on suction side provides a better benefit compared to that on pressure side or mid camber line. A squealer on mid camber line performs better than that on a pressure side.

1.
Bunker, R. S., and Bailey, J. C., 2000, “Blade Tip Heat Transfer and Flow With Chordwise Sealing Strips,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, Hawaii, pp. 548–555.
2.
Bunker, R. S., and Bailey, J. C., 2000, “An Experimental Study of Heat Transfer and Flow on a Gas Turbine Blade Tip with Various Tip Leakage Sealing Methods,” 4th ISHMT / ASME Heat and Mass Transfer Conference, India.
3.
Heyes, F. J. G., Hodson, H. P., and Dailey, G. M., 1991, “The Effect of Blade Tip Geometry on the Tip Leakage Flow in Axial Turbine Cascades,” ASME Paper No. 91-GT-135.
4.
Azad, G. S., Han, J. C., and Boyle, R. J., 2000, “Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade,” ASME Paper No. 2000-GT-195.
5.
Dunn, M. G., and Haldeman, C. W., 2000, “Time-Averaged Heat Flux for a Recessed Tip, Lip, and Platform of a Transonic Turbine Blade,” ASME Paper No. GT-0197.
6.
Ameri, A. A., Steinthorsson, E., and Rigby, L. D., 1997, “Effect of Squealer Tip on Rotor Heat Transfer and Efficiency,” ASME Paper No. 97-GT-128.
7.
Ameri, A. A., Steinthorsson, E., and Rigby, L. D., 1998, “Effects of Tip Clearance and Casing Recess on Heat Transfer and Stage Efficiency in Axial Turbines,” ASME Paper No. 98-GT-369.
8.
Ameri, A. A., 2001, “Heat Transfer and Flow on the Blade Tip of a Gas Turbine Equipped with a Mean-Camberline Strip,” ASME Paper No. 2001-GT-0156.
9.
Yang, T. T., and Diller, T. E., 1995, “Heat Transfer and Flow for a Grooved Turbine Blade Tip in a Transonic Cascade,” ASME Paper No. 95-WA/HT-29.
10.
Metzger
,
D. E.
,
Bunker
,
R. S.
, and
Chyu
,
M. K.
,
1989
, “
Cavity Heat Transfer on a Transverse Grooved Wall in a Narrow Flow Channel
,”
ASME J. Heat Transfer
,
111
, pp.
73
79
.
11.
Chyu
,
M. K.
,
Moon
,
H. K.
, and
Metzger
,
D. E.
,
1989
, “
Heat Transfer in the Tip Region of Grooved Turbine Blades
,”
ASME J. Turbomach.
,
111
, pp.
131
138
.
12.
Bindon, J. P., and Morphus, G., 1988, “The Effect of Relative Motion, Blade Edge Radius and Gap Size on the Blade Tip Pressure Distribution in an Annular Turbine Cascade with Clearance,” ASME Paper No. 88-GT-256.
13.
Bindon
,
J. P.
,
1989
, “
The Measurement and Formation of Tip Clearance Loss
,”
ASME J. Turbomach.
,
111
, pp.
258
263
.
14.
Moore
,
J.
,
Moore
,
J. G.
,
Henry
,
G. S.
, and
Chaudhury
,
U.
,
1989
, “
Flow and Heat Transfer in Turbine Tip Gaps
,”
ASME J. Turbomach.
,
111
, pp.
301
309
.
15.
Yaras, M. I., and Sjolander, S. A., 1991, “Effects of Simulated Rotation on Tip Leakage in a Planar Cascade of Turbine Blades, Part I-Tip Gap Flow,” ASME Paper No. 91-GT-127.
16.
Sjolander
,
S. A.
, and
Cao
,
D.
,
1995
, “
Measurements of the Flow in an Idealized Turbine Tip Gap
,”
ASME J. Turbomach.
,
117
, pp.
578
584
.
17.
Kaiser, I., and Bindon, J. P., 1997, “The Effect of Tip Clearance on the Development of Loss Behind a Rotor and a Subsequent Nozzle,” ASME Paper No. 97-GT-53.
18.
Lakshminarayana
,
B.
,
1970
, “
Methods of Predicting the Tip Clearance Effects in Axial Flow Turbomachinery
,”
ASME J. Basic Eng.
,
92
, pp.
467
482
.
19.
Booth
,
T. C.
,
Dodge
,
P. R.
, and
Hepworth
,
H. K.
,
1982
, “
Rotor Tip Leakage: Part I—Basic Methodology
,”
ASME J. Eng. Power
,
104
, pp.
154
161
.
20.
Wadia
,
A. R.
, and
Booth
,
T. C.
,
1982
, “
Rotor Tip Leakage: Part II—Design Optimization Through Viscous Analysis and Experiment
,”
ASME J. Eng. Power
,
104
, pp.
162
169
.
21.
Mayle, R. E., and Metzger D. E., 1982, “Heat Transfer at the Tip of an Unshrouded Turbine Blade” Proc. Seventh Int. Heat Transfer Conf., Hemisphere Pub., New York, pp. 87–92.
22.
Metzger
,
D. E.
,
Dunn
,
M. G.
, and
Hah
,
C.
,
1991
, “
Turbine Tip and Shroud Heat Transfer
,”
ASME J. Turbomach.
,
113
, pp.
502
507
.
23.
Bunker, R. S., Bailey, J. C., and Ameri, A. A., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 1: Experimental Results,” ASME Paper No. 99-GT-169.
24.
Ameri, A. A., and Steinthorsson, E., 1995, “Prediction of Unshrouded Rotor Blade Tip Heat Transfer,” ASME Paper No. 95-GT-142.
25.
Ameri, A. A., and Steinthorsson, E., 1996, “Analysis of Gas Turbine Rotor Blade Tip and Shroud Heat Transfer,” ASME Paper No. 96-GT-189.
26.
Ameri, A. A., and Bunker, R. S., 1999, “Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine: Part 2: Simulation Results,” ASME Paper No. 99-GT-283.
27.
Azad, G. S., Han, J. C., Teng, S., and Boyle, R., 2000, “Heat Transfer and Pressure Distribution on a Gas Turbine Blade Tip,” ASME Paper No. 2000-GT-194.
28.
Teng
,
S.
,
Han
,
J. C.
, and
Azad
,
G. S.
,
2001
, “
Detailed Heat Transfer Coefficient Distributions on a Large-Scale Gas Turbine Blade Tip
,”
ASME J. Heat Transfer
,
123
, pp.
803
809
.
29.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
You do not currently have access to this content.