We investigate the constant-wall-temperature convective heat-transfer characteristics of a model gaseous flow in two-dimensional micro and nano-channels under hydrodynamically and thermally fully developed conditions. Our investigation covers both the slip-flow regime 0⩽Kn⩽0.1, and most of the transition regime 0.1<Kn⩽10, where Kn, the Knudsen number, is defined as the ratio between the molecular mean free path and the channel height. We use slip-flow theory in the presence of axial heat conduction to calculate the Nusselt number in the range 0⩽Kn⩽0.2, and a stochastic molecular simulation technique known as the direct simulation Monte Carlo (DSMC) to calculate the Nusselt number in the range 0.02<Kn<2. Inclusion of the effects of axial heat conduction in the continuum model is necessary since small-scale internal flows are typically characterized by finite Peclet numbers. Our results show that the slip-flow prediction is in good agreement with the DSMC results for Kn⩽0.1, but also remains a good approximation beyond its expected range of applicability. We also show that the Nusselt number decreases monotonically with increasing Knudsen number in the fully accommodating case, both in the slip-flow and transition regimes. In the slip-flow regime, axial heat conduction is found to increase the Nusselt number; this effect is largest at Kn=0 and is of the order of 10 percent. Qualitatively similar results are obtained for slip-flow heat transfer in circular tubes.

1.
Alexander
,
F. J.
, and
Garcia
,
A. L.
,
1997
, “
The Direct Simulation Monte Carlo Method
,”
Comput. Phys.
,
11
, pp.
588
593
.
2.
Alexander
,
F. J.
,
Garcia
,
A. L.
, and
Alder
,
B. J.
,
1994
, “
Direct Simulation Monte Carlo for Thin-Film Bearings
,”
Phys. Fluids
,
6
, pp.
3854
3860
.
3.
Alexander
,
F. J.
,
Garcia
,
A. L.
, and
Alder
,
B. J.
,
1998
, “
Cell Size Dependence of Transport Coefficients in Stochastic Particle Algorithms
,”
Phys. Fluids
,
10
, pp.
1540
1542
.
4.
Arkilic, E., Breuer, K. S., and Schmidt, M. A., 1994, “Gaseous Flow FED-197, in Microchannels,” Application of Microfabrication to Fluid Mechanics, ASME, New York, pp. 57–66.
5.
Barron
,
R. F.
,
Wang
,
X.
,
Ameel
,
T. A.
, and
Washington
,
R. O.
,
1997
, “
The Graetz Problem Extended to Slip-Flow
,”
Int. J. Heat Mass Transf.
,
40
, pp.
1817
1823
.
6.
van den Berg
,
H. R.
,
Seldam
,
C. A.
, and
van der Gulik
,
P. S.
,
1993
, “
Thermal Effects in Compressible Viscous Flow in a Capillary
,”
Int. J. Thermophys.
,
14
, pp.
865
892
.
7.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1994
, “
Simulation of Heat and Momentum Transfer in Complex Microgeometries
,”
J. Thermophys. Heat Transfer
,
8
, pp.
647
655
.
8.
Beskok
,
A.
, and
Karniadakis
,
G. E.
,
1999
, “
A Model for Flows in Channels and Ducts at Micro and Nano Scales
,”
Microscale Thermophys. Eng.
,
3
, pp.
43
77
.
9.
Bird, G. A., 1994, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford.
10.
Cercignani, C., 1988, The Boltzmann Equation and Its Applications, Springer-Verlag, New York.
11.
Garcia
,
A.
, and
Wagner
,
W.
,
2000
, “
Time Step Truncation Error in Direct Simulation Monte Carlo
,”
Phys. Fluids
,
12
, pp.
2621
2633
.
12.
Grosjean
,
C. C.
,
Pahor
,
S.
, and
Strnad
,
J.
,
1963
, “
Heat Transfer in Laminar Flow Through a Gap
,”
Appl. Sci. Res.
,
11
, pp.
292
294
.
13.
Hadjiconstantinou, N. G., 2000, “Convective Heat Transfer in Micro and Nano Channels: Nusselt Number Beyond Slip Flow,” Proceedings of the 2000 IMECE, HTD-Vol. 366-2, pp. 13–22.
14.
Hadjiconstantinou, N., and Simek, O., 2001, “Nusselt Number in Micro and Nano Channels under Conditions of Constant Wall Temperature,” Proceedings of the 2001 IMECE.
15.
Hadjiconstantinou
,
N. G.
,
2000
, “
Analysis of Discretization in the Direct Simulation Monte Carlo
,”
Phys. Fluids
,
12
, pp.
2634
2638
.
16.
Harley
,
J. C.
,
Huang
,
Y.
,
Bau
,
H. H.
, and
Zemel
,
J. N.
,
1995
, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
,
284
, pp.
257
274
.
17.
Ho
,
C. M.
, and
Tai
,
Y. C.
,
1998
, “
Micro-Electro-Mechanical Systems (MEMS) and Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
579
612
.
18.
Inman, R. M., 1964, “Heat Transfer for Laminar Slip Flow of a Rarefied Gas in a Parallel Plate Channel or a Circular Tube With Uniform Wall Temperature,” NASA TN D-2213.
19.
Kavehpour
,
H. P.
,
Faghri
,
M.
, and
Asako
,
Y.
,
1997
, “
Effects of Compressibility and Rarefaction on Gaseous Flows in Microchannels
,”
Numer. Heat Transfer, Part A
,
32
, pp.
677
696
.
20.
Knudsen
,
M.
,
1909
, “
Die Gesetze der molecular Stromung und dieinneren Reibungstromung der Gase durch Rohren
,”
Annals of Physics
,
28
, pp.
75
130
.
21.
Larrode
,
F. E.
,
Housiadas
,
C.
, and
Drossinos
,
Y.
,
2000
, “
Slip-Flow Heat Transfer in Circular Tubes
,”
Int. J. Heat Mass Transf.
,
43
, pp.
2669
2690
.
22.
Loyalka
,
S. K.
,
1975
, “
Kinetic Theory of Thermal Transpiration and Mechanocaloric Effect. II.
,”
J. Chem. Phys.
,
63
, pp.
4054
4060
.
23.
Loyalka
,
S. K.
,
1989
, “
Temperature Jump and Thermal Creep Slip: Rigid Sphere Gas
,”
Phys. Fluids
,
1
, pp.
403
408
.
24.
Mills, A. F., 1992, Heat Transfer, Irwin.
25.
Morris
,
D. L.
,
Hannon
,
L.
, and
Garcia
,
A. L.
,
1992
, “
Slip Length in a Dilute Gas
,”
Phys. Rev. A
,
46
, pp.
5279
5281
.
26.
Nagayama, K., Farouk, B., and Oh, C. K., 1998, “Heat Transfer in Low Pressure (High Knudsen Number) Developing Flows Through Parallel Plates,” Heat Transfer 1998: Proceedings of the Eleventh International Heat Transfer Conference, Vol. 3, pp. 127–132.
27.
Ohwada
,
T.
,
Sone
,
Y.
, and
Aoki
,
K.
,
1989
, “
Numerical Analysis of the Poiseuille and Thermal Transpiration Flows Between Parallel Plates on the Basis of the Boltzmann Equation for Hard-Sphere Molecules
,”
Phys. Fluids
,
1
, pp.
2042
2049
.
28.
Oran
,
E. S.
,
Oh
,
C. K.
, and
Cybyk
,
B. Z.
,
1999
, “
Direct Simulation Monte Carlo: Recent Advances and Applications
,”
Annu. Rev. Fluid Mech.
,
30
, pp.
403
431
.
29.
Pahor
,
S.
, and
Strnad
,
J.
,
1961
, “
A Note on Heat Transfer in Laminar Flow Through a Gap
,”
Appl. Sci. Res.
,
10
, pp.
81
84
.
30.
Piekos
,
E. S.
, and
Breuer
,
K. S.
,
1996
, “
Numerical Modeling of Micromechanical Devices Using the Direct Simulation Monte Carlo Method
,”
ASME J. Fluids Eng.
,
118
, pp.
464
469
.
31.
Shah, R. K., and London, A. L., 1978, Laminar Flow Forced Convection in Ducts, Academic Press.
32.
Simek, O., and Hadjiconstantinou, N. G., 2001, “Slip-Flow Constant-Wall-Temperature Nusselt Number in Circular Tubes in the Presence of Axial Heat Conduction,” Proceedings of the 2001 IMECE.
33.
Sone
,
Y.
,
2000
, “
Flows Induced by Temperature Fields in a Rarefied Gas and Their Ghost Effect on the Behavior of a Gas in Continuum Limit
,”
Annu. Rev. Fluid Mech.
,
32
, pp.
779
811
.
34.
Sparrow
,
E. M.
, and
Lin
,
S. H.
,
1962
, “
Laminar Heat Transfer in Tubes Under Slip Flow Conditions
,”
ASME J. Heat Transfer
,
84
, pp.
363
369
.
35.
Sun
,
H.
, and
Faghri
,
M.
,
2000
, “
Effects of Rarefaction and Compressibility of Gaseous Flow in Microchannel Using DSMC
,”
Numer. Heat Transfer, Part A
,
38
, pp.
153
168
.
36.
Wagner
,
W.
,
1992
, “
A Convergence Proof for Bird’s Direct Simulation Monte Carlo Method for the Boltzmann Equation
,”
J. Stat. Phys.
,
66
, pp.
1011
1044
.
37.
Wijesinghe, S., and Hadjiconstantinou, N. G., 2001, “Velocity Slip and Temperature Jump in Dilute Hard Sphere Gases at Finite Knudsen Numbers,” Proceedings of the First MIT Conference on Computational Fluid and Solid Mechanics, Vol. 2, pp. 1019–1021.
You do not currently have access to this content.