The hyperbolic diffusion equation is often used to analyze laser heating of dielectric materials and in thermal processing of nonhomogeneous materials. In this paper, anomalies in existing solutions of the hyperbolic heat equation are identified. In particular, the singularities associated with the interaction of a wave front and a boundary may cause a violation of the imposed boundary condition. This violation may give rise to physically unacceptable results such as a temperature drop due to heating or a temperature rise due to cooling. The development of appropriate remedies for these happenings is a major focus of this paper. In addition, the unique mathematical features of the hyperbolic heat equation are studied and set forth. Green’s function solutions for semi-infinite and infinite bodies are presented. For finite bodies, it is demonstrated that the relevant series solutions need special attention to accelerate their convergence and to deal with certain anomalies.

1.
Tzou, D. Y., 1997, Macro-to-Microscale Heat Transfer, Taylor and Francis, New York.
2.
Chester
,
M.
,
1963
, “
Second Sound in Solids
,”
Phys. Rev.
,
131
, pp.
2013
2015
.
3.
Maurer
,
M. J.
, and
Thompson
,
H. A.
,
1973
, “
Non-Fourier Effects at High Heat Flux
,”
ASME J. Heat Transfer
,
95
, pp.
284
286
.
4.
Chandrasekharaiah
,
D. S.
,
1986
, “
Thermoelasticity With Second Sound: A Review
,”
Appl. Mech. Rev.
,
39
, pp.
355
376
.
5.
Bertman
,
B.
, and
Sandiford
,
D. J.
,
1970
, “
Second Sound in Solid Helium
,”
Sci. Am.
,
222
, pp.
92
101
.
6.
Xu
,
Yun-Sheng
, and
Guo
,
Zeng-Yuan
,
1995
, “
Heat Wave Phenomena in IC Chips
,”
Int. J. Heat Mass Transf.
,
38
, pp.
2919
2922
.
7.
Kaminski
,
W.
,
1990
, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
, pp.
555
560
.
8.
Minkowycz
,
W. J.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
,
1999
, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source. The Sparrow Number
,”
Int. J. Heat Mass Transf.
,
42
, No.
18
, pp.
3373
3385
.
9.
Hays-Stang
,
Kathy J.
, and
Haji-Sheikh
,
A.
,
1999
, “
A Unified Solution For Heat Conduction In Thin Films
,”
Int. J. Heat Mass Transf.
,
42
, pp.
455
465
.
10.
Qui
,
T. Q.
, and
Tien
,
C. L.
,
1992
, “
Short-Pulse Laser Heating on Metals
,”
Int. J. Heat Mass Transf.
,
35
, pp.
719
726
.
11.
Qui
,
T. Q.
, and
Tien
,
C. L.
,
1993
, “
Heat Transfer Mechanisms During Short-Pulse Laser Heating on Metals
,”
ASME J. Heat Transfer
,
115
, pp.
835
841
.
12.
Guo
,
Z.-Y.
, and
Xu
,
Y.-S.
,
1995
, “
Non-Fourier Heat Conduction in IC Chip
,”
ASME J. Electron. Packag.
,
117
, pp.
174
177
.
13.
Ozisik
,
M. N.
, and
Vick
,
B.
,
1984
, “
Propagation and Reflection of Thermal Waves in a Finite Medium
,”
Int. J. Heat Mass Transf.
,
27
, pp.
1845
1854
.
14.
Ozisik
,
M. N.
, and
Tzou
,
D. Y.
,
1994
, “
On the Wave Theory in Heat Conduction
,”
ASME J. Heat Transfer
,
116
, pp.
526
535
.
15.
Chen
,
H.-T.
, and
Lin
,
J.-Y.
,
1994
, “
Analysis of Two-Dimensional Hyperbolic Heat Conduction Problems
,”
Int. J. Heat Mass Transf.
,
37
, pp.
153
164
.
16.
Haji-Sheikh
,
A.
, and
Beck
,
J. V.
,
1994
, “
Green’s Function Solution for Thermal Wave Equation in Finite Bodies
,”
Int. J. Heat Mass Transf.
,
37
, No.
17
, pp.
2615
2626
.
17.
Tzou
,
D. Y.
,
1995
, “
A Unified Field Approach for Heat Conduction from Macro to Micro-Scales
,”
ASME J. Heat Transfer
,
117
, p.
8
8
.
18.
Beck, J. V., Cole, K., Haji-Sheikh, A., and Litkouhi, B., 1992, Heat Conduction Using Green’s Functions, Hemisphere Publ. Corp., Washington D.C.
19.
Ozisik, M. N., 1980, Heat Conduction, Wiley, New York.
20.
Churchill, R. V., 1958, Operational Mathematics, McGraw-Hill, New York.
21.
Wolfram, S., 1996, The Mathematica, Third Edition, Cambridge University Press, Cambridge, UK.
22.
Kar
,
A.
,
Chan
,
C. L.
, and
Mazumder
,
J.
,
1992
, “
Comparative Studies on Nonlinear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical Solutions
,”
ASME J. Heat Transfer
,
114
, pp.
14
40
.
23.
Haji-Sheikh, A., Payne, F. R., and Hays-Stang, and Kathy, J., 2000, “On Convergence and Uniqueness of Microscale Heat Transfer Equation,” in Integral Methods in Science and Engineering, B. Bertram, C. Constanda, and A. Struthers, eds., Champman & Hall/CRC, London, UK, pp. 167–172.
You do not currently have access to this content.