Materials processing using high power pulsed lasers involves complex phenomena including rapid heating, superheating of the laser-melted material, rapid nucleation, and phase explosion. With a heating rate on the order of 109K/s or higher, the surface layer melted by laser irradiation can reach a temperature higher than the normal boiling point. On the other hand, the vapor pressure does not build up as fast and thus falls below the saturation pressure at the surface temperature, resulting in a superheated, metastable state. As the temperature of the melt approaches the thermodynamic critical point, the liquid undergoes a phase explosion that turns the melt into a mixture of liquid and vapor. This article describes heat transfer and phase change phenomena during nanosecond pulsed laser ablation of a metal, with an emphasis on phase explosion and non-equilibrium phase change. The time required for nucleation in a superheated liquid, which determines the time needed for phase explosion to occur, is also investigated from both theoretical and experimental viewpoints.

1.
Crafer, R. C., and Oakley, P. J., eds., 1993, Laser Processing in Manufacturing, Chapman & Hall, New York.
2.
Chrisey, D. B., and Hubler, G. K., eds., 1994, Pulsed Laser Deposition of Thin Films, John Wiley & Sons, New York.
3.
Wood
,
R. F.
,
Leboeuf
,
J. N.
,
Chen
,
K. R.
,
Geohegan
,
D. B.
, and
Puretzky
,
A. A.
,
1998
, “
Dynamics of Plume Propagation, Splitting, and Nanoparticle Formation during Pulsed-Laser Ablation
,”
Appl. Surf. Sci.
,
127–129
, pp.
151
158
.
4.
Puretzky
,
A. A.
,
Geohegan
,
D. B.
,
Fan
,
X.
, and
Pennycook
,
S. J.
,
2000
, “
Dynamics of Single-wall Carbon Nanotube Synthesis by Laser Vaporization
,”
Appl. Phys. A
,
70
, pp.
153
160
.
5.
Miotello
,
A.
, and
Kelly
,
R.
,
1995
, “
Critical Assessment of Thermal Models for Laser Sputtering at High Fluences
,”
Appl. Phys. Lett.
,
67
, pp.
3535
3537
.
6.
Song
,
K. H.
, and
Xu
,
X.
,
1998
, “
Explosive Phase Transformation in Pulsed Laser Ablation
,”
Appl. Surf. Sci.
,
127–129
, pp.
111
116
.
7.
Xu
,
X.
,
2001
, “
Heat Transfer and Phase Change during High Power Laser Interaction With Metal
,”
Annu. Rev. Heat Transfer
, C.-L. Tien, V. Prasad, and F. P. Incropera, eds., Bell House, New York,
12
, pp.
79
115
.
8.
Willis, D. A., and Xu, X., 2001, “Heat Transfer and Phase Change during Picosecond Laser Ablation of Nickel,” Int. J. Heat Mass Transf., submitted.
9.
Martynyuk
,
M. M.
,
1974
, “
Vaporization and Boiling of Liquid Metal in an Exploding Wire
,”
Sov. Phys. Tech. Phys.
,
19
, pp.
793
797
.
10.
Martynyuk
,
M. M.
,
1983
, “
Critical Constants of Metals
,”
Russ. J. Phys. Chem.
,
57
, pp.
494
501
.
11.
Xu
,
X.
, and
Song
,
K. H.
,
1999
, “
Interface Kinetics during Pulsed Laser Ablation
,”
Appl. Phys. A.
,
69
, pp.
S869–S873
S869–S873
.
12.
Xu
,
X.
, and
Song
,
K. H.
,
2000
, “
Phase Change Phenomena during High Power Laser-Materials Interaction
,”
Mater. Sci. Eng., A
,
292
, pp.
162
168
.
13.
Sokolowski-Tinken, K., Bialkowski, J., Boing, M., Cavalleri, A., and von der Linde, D., 1999, “Bulk Phase Explosion and Surface Boiling during Short Pulsed Laser Ablation of Semiconductor,” in Quantum Electronics and Laser Science Conference, OSA Technical Digest, Optical Society of America, Washington, DC, pp. 231–232.
14.
Zhigilei
,
L. V.
, and
Garrison
,
B. J.
,
1999
, “
Molecular Dynamics Simulation Study of the Fluence Dependence of Particle Yield and Plume Composition in Laser Desorption and Ablation of Organic Solids
,”
Appl. Phys. Lett.
,
74
, pp.
1341
1343
.
15.
Von Allmen, M., 1987, Laser-Beam Interactions with Materials, Springer Series in Materials Science 2, Springer-Verlag, Berlin.
16.
Fucke
,
W.
, and
Seydel
,
U.
,
1980
, “
Improved Experimental Determination of Critical-Point Data for Tungsten
,”
High Temp.-High Press.
,
12
, pp.
419
432
.
17.
Lienhard
,
L. H.
, and
Karimi
,
A.
,
1981
, “
Homogeneous Nucleation and the Spinodal Line
,”
ASME J. Heat Transfer
103
, pp.
61
64
.
18.
Avedisian
,
C. T.
,
1985
, “
The Homogeneous Nucleation Limits of Liquids
,”
J. Phys. Chem. Ref. Data
,
14
, pp.
695
729
.
19.
Martynyuk
,
M. M.
,
1977
, “
Phase Explosion of a Metastable Fluid
,”
Fiz. Goreniya Vzryva
,
13
, pp.
213
229
.
20.
Domb, C., 1996, The Critical Point, Taylor & Francis, New York.
21.
Martynyuk
,
M. M.
,
1975
, “
Liquid-Vapor and Metal-Dielectric Transitions in Mercury
,”
Russ. J. Phys. Chem.
,
49
, pp.
1545
1547
.
22.
Batanov
,
V. A.
,
Bunkin
,
F. V.
,
Prokhorov
,
A. M.
, and
Fedorov
,
V. B.
,
1973
, “
Evaporation of Metallic Targets Caused by Intense Optical Radiation
,”
Sov. Phys. JETP
,
36
, pp.
311
322
.
23.
Carey, V. P., 1992, Liquid-Vapor Phase-Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, Hemisphere Publishing Corp., Washington.
24.
Skripov, V. P., 1974, Metastable Liquids, John Wiley & Sons, New York.
25.
Song, K. H., and Xu, X., 1998, “Measurement of Laser-induced Shock Wave in Thin Nickel Foil,” Proc. of the 1998 ASME International Mechanical Engineering Congress and Exposition, HTD-Vol. 361-4, pp. 79–86.
26.
Cavalleri
,
A.
,
Sokolowski-Tinten
,
K.
,
Bialkowski
,
J.
, and
von der Linde
,
D.
,
1998
, “
Femtosecond Laser Ablation of Gallium Arsenide Investigated with Time-of-Flight Spectroscopy
,”
Appl. Phys. Lett.
,
72
, pp.
2385
2387
.
You do not currently have access to this content.